XStorm: A New Gamma Ray Spectrometer for Detection of Close Proximity Gamma Ray Glows and TGFs
In this paper, we present XStorm, a gamma ray spectrometer developed to detect gamma ray glows and terrestrial gamma ray flashes (TGFs) in close proximity. Measurements are mostly planned to take place on balloon campaigns but also on the ground using bigger detectors. The main aim in developing XStorm is to perform new in situ and close proximity measurements of those events to improve the understanding of the physical processes involved. For that, we ensured XStorm reached performances adapted to glow and TGF detections. It detects photons with energy between ∼400 keV and ∼20 MeV. Detected particles are timetagged with a 600 ns precision with respect to UTC. Using two types of scintillator, Bismuth Germanium Oxide and EJ‐276 plastic associated with SiPMs, the instrument is able to discriminate three types of particles involved in those events: photons, neutrons, and electrons. The behavior of the detector under high particle fluxes has been quantified through ground testing using a pulse generator. A triggered detection system has been developed, with different thresholds depending on the target of study. First measurements have been carried out with test flights in fair weather conditions and are presented here. Estimations of the configurations in which a gamma ray glow can be detected by XStorm and of the number of TGFs that could be detected in specific campaigns are also addressed.