Cell Death and Differentiation, volume 24, issue 7, pages 1239-1252
A defined metabolic state in pre B cells governs B-cell development and is counterbalanced by Swiprosin-2/EFhd1
Merle Stein
1, 2
,
Sebastian Dütting
1
,
Dimitrios Mougiakakos
3
,
Michael Bösl
4
,
Kristin Fritsch
1
,
Dorothea Reimer
1
,
Sophia Urbanczyk
1
,
Tobit Steinmetz
1
,
Wolfgang Schuh
1
,
Aline Bozec
5
,
Thomas H. Winkler
6
,
Hans-Martin Jäck
1
,
Dirk Mielenz
1
Publication type: Journal Article
Publication date: 2017-05-19
Journal:
Cell Death and Differentiation
scimago Q1
SJR: 4.102
CiteScore: 24.7
Impact factor: 13.7
ISSN: 13509047, 14765403
PubMed ID:
28524857
Molecular Biology
Cell Biology
Abstract
B-cell development in the bone marrow comprises proliferative and resting phases in different niches. We asked whether B-cell metabolism relates to these changes. Compared to pro B and small pre B cells, large pre B cells revealed the highest glucose uptake and ROS but not mitochondrial mass, whereas small pre B cells exhibited the lowest mitochondrial membrane potential. Small pre B cells from Rag1−/−;33.C9 μ heavy chain knock-in mice revealed decreased glycolysis (ECAR) and mitochondrial spare capacity compared to pro B cells from Rag1−/− mice. We were interested in the step regulating this metabolic switch from pro to pre B cells and uncovered that Swiprosin-2/EFhd1, a Ca2+-binding protein of the inner mitochondrial membrane involved in Ca2+-induced mitoflashes, is expressed in pro B cells, but downregulated by surface pre B-cell receptor expression. Knockdown and knockout of EFhd1 in 38B9 pro B cells decreased the oxidative phosphorylation/glycolysis (OCR/ECAR) ratio by increasing glycolysis, glycolytic capacity and reserve. Prolonged expression of EFhd1 in EFhd1 transgenic mice beyond the pro B cell stage increased expression of the mitochondrial co-activator PGC-1α in primary pre B cells, but reduced mitochondrial ATP production at the pro to pre B cell transition in IL-7 cultures. Transgenic EFhd1 expression caused a B-cell intrinsic developmental disadvantage for pro and pre B cells. Hence, coordinated expression of EFhd1 in pro B cells and by the pre BCR regulates metabolic changes and pro/pre B-cell development.
Found
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.