Open Access
Open access
volume 5 issue 1 publication number 4015

Implementing a strand of a scalable fault-tolerant quantum computing fabric

Jerry M. Chow 1
Jay M. Gambetta 1
Easwar Magesan 1
David W. Abraham 1
Andrew W. Cross 1
B. R. Johnson 2
Nicholas A Masluk 1
Colm A Ryan 2
John A. Smolin 1
Srikanth J Srinivasan 1
M. Steffen 1
Publication typeJournal Article
Publication date2014-06-24
scimago Q1
wos Q1
SJR4.761
CiteScore23.4
Impact factor15.7
ISSN20411723
PubMed ID:  24958160
General Chemistry
General Biochemistry, Genetics and Molecular Biology
General Physics and Astronomy
Abstract
With favourable error thresholds and requiring only nearest-neighbour interactions on a lattice, the surface code is an error-correcting code that has garnered considerable attention. At the heart of this code is the ability to perform a low-weight parity measurement of local code qubits. Here we demonstrate high-fidelity parity detection of two code qubits via measurement of a third syndrome qubit. With high-fidelity gates, we generate entanglement distributed across three superconducting qubits in a lattice where each code qubit is coupled to two bus resonators. Via high-fidelity measurement of the syndrome qubit, we deterministically entangle the code qubits in either an even or odd parity Bell state, conditioned on the syndrome qubit state. Finally, to fully characterize this parity readout, we develop a measurement tomography protocol. The lattice presented naturally extends to larger networks of qubits, outlining a path towards fault-tolerant quantum computing. Quantum error correction protocols aim at protecting quantum information from corruption due to decoherence and imperfect control. Using three superconducting transmon qubits, Chow et al. demonstrate necessary elements for the implementation of the surface error correction code on a two-dimensional lattice.
Found 
Found 

Top-30

Journals

5
10
15
20
25
30
35
40
45
Physical Review A
42 publications, 17.21%
Physical Review Letters
17 publications, 6.97%
Quantum Information Processing
15 publications, 6.15%
Physical Review B
13 publications, 5.33%
Applied Physics Letters
8 publications, 3.28%
Nature Communications
8 publications, 3.28%
Scientific Reports
8 publications, 3.28%
Physical Review Applied
6 publications, 2.46%
npj Quantum Information
6 publications, 2.46%
Quantum
6 publications, 2.46%
Physical Review X
5 publications, 2.05%
PRX Quantum
5 publications, 2.05%
New Journal of Physics
5 publications, 2.05%
Physical Review Research
4 publications, 1.64%
Nature
3 publications, 1.23%
Chinese Physics B
3 publications, 1.23%
Quantum Science and Technology
3 publications, 1.23%
Science advances
3 publications, 1.23%
Springer Theses
3 publications, 1.23%
Journal of Applied Physics
2 publications, 0.82%
Results in Physics
2 publications, 0.82%
Physics Letters, Section A: General, Atomic and Solid State Physics
2 publications, 0.82%
Annalen der Physik
2 publications, 0.82%
Nature Physics
2 publications, 0.82%
EPJ Quantum Technology
2 publications, 0.82%
Review of Scientific Instruments
1 publication, 0.41%
Journal of Mathematical Physics
1 publication, 0.41%
Low Temperature Physics
1 publication, 0.41%
Applied Physics Reviews
1 publication, 0.41%
5
10
15
20
25
30
35
40
45

Publishers

10
20
30
40
50
60
70
80
90
100
American Physical Society (APS)
93 publications, 38.11%
Springer Nature
56 publications, 22.95%
Institute of Electrical and Electronics Engineers (IEEE)
17 publications, 6.97%
IOP Publishing
16 publications, 6.56%
AIP Publishing
14 publications, 5.74%
Elsevier
13 publications, 5.33%
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
6 publications, 2.46%
Wiley
4 publications, 1.64%
Association for Computing Machinery (ACM)
4 publications, 1.64%
American Association for the Advancement of Science (AAAS)
4 publications, 1.64%
Science in China Press
2 publications, 0.82%
American Chemical Society (ACS)
2 publications, 0.82%
Royal Society of Chemistry (RSC)
2 publications, 0.82%
Institution of Engineering and Technology (IET)
1 publication, 0.41%
MDPI
1 publication, 0.41%
Oxford University Press
1 publication, 0.41%
Stichting SciPost
1 publication, 0.41%
Optica Publishing Group
1 publication, 0.41%
Annual Reviews
1 publication, 0.41%
SPIE-Intl Soc Optical Eng
1 publication, 0.41%
Frontiers Media S.A.
1 publication, 0.41%
Institute of Electrical Engineers of Japan (IEE Japan)
1 publication, 0.41%
10
20
30
40
50
60
70
80
90
100
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
244
Share
Cite this
GOST |
Cite this
GOST Copy
Chow J. M. et al. Implementing a strand of a scalable fault-tolerant quantum computing fabric // Nature Communications. 2014. Vol. 5. No. 1. 4015
GOST all authors (up to 50) Copy
Chow J. M., Gambetta J. M., Magesan E., Abraham D. W., Cross A. W., Johnson B. R., Masluk N. A., Ryan C. A., Smolin J. A., Srinivasan S. J., Steffen M. Implementing a strand of a scalable fault-tolerant quantum computing fabric // Nature Communications. 2014. Vol. 5. No. 1. 4015
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/ncomms5015
UR - https://doi.org/10.1038/ncomms5015
TI - Implementing a strand of a scalable fault-tolerant quantum computing fabric
T2 - Nature Communications
AU - Chow, Jerry M.
AU - Gambetta, Jay M.
AU - Magesan, Easwar
AU - Abraham, David W.
AU - Cross, Andrew W.
AU - Johnson, B. R.
AU - Masluk, Nicholas A
AU - Ryan, Colm A
AU - Smolin, John A.
AU - Srinivasan, Srikanth J
AU - Steffen, M.
PY - 2014
DA - 2014/06/24
PB - Springer Nature
IS - 1
VL - 5
PMID - 24958160
SN - 2041-1723
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2014_Chow,
author = {Jerry M. Chow and Jay M. Gambetta and Easwar Magesan and David W. Abraham and Andrew W. Cross and B. R. Johnson and Nicholas A Masluk and Colm A Ryan and John A. Smolin and Srikanth J Srinivasan and M. Steffen},
title = {Implementing a strand of a scalable fault-tolerant quantum computing fabric},
journal = {Nature Communications},
year = {2014},
volume = {5},
publisher = {Springer Nature},
month = {jun},
url = {https://doi.org/10.1038/ncomms5015},
number = {1},
pages = {4015},
doi = {10.1038/ncomms5015}
}