volume 14 issue 9 pages 849-863

Data-analysis strategies for image-based cell profiling

Juan C. Caicedo 1
Sam Cooper 2
Florian Heigwer 3
Scott Warchal 4
Peng Qiu 5
Csaba Molnár 6
Aliaksei S Vasilevich 7
Joseph D. Barry 8
Harmanjit Singh Bansal 9
Oren Kraus 10
Mathias Wawer 11
Lassi Paavolainen 12
Markus D Herrmann 13
Mohammad Rohban 1
Jane Hung 1, 14
Holger Hennig 15
John Concannon 16
Ian Smith 17
Paul A Clemons 11
Shantanu Singh 1
Paul Rees 1, 18
Peter Horvath 6, 12
Anne E. Carpenter 1
6
 
Synthetic and System Biology Unit, Hungarian Academy of Sciences, Szeged, Hungary
9
 
National Centre for Biological Sciences, Bangalore, India
16
 
Department of Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, USA
Publication typeJournal Article
Publication date2017-09-01
scimago Q1
wos Q1
SJR17.251
CiteScore49.0
Impact factor32.1
ISSN15487091, 15487105
PubMed ID:  28858338
Biochemistry
Molecular Biology
Cell Biology
Biotechnology
Abstract
This Review covers the steps required to create high-quality image-based profiles from high-throughput microscopy images. Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microscopy systems and subsequent image processing and analysis. Here, we introduce the steps required to create high-quality image-based (i.e., morphological) profiles from a collection of microscopy images. We recommend techniques that have proven useful in each stage of the data analysis process, on the basis of the experience of 20 laboratories worldwide that are refining their image-based cell-profiling methodologies in pursuit of biological discovery. The recommended techniques cover alternatives that may suit various biological goals, experimental designs, and laboratories' preferences.
Found 
Found 

Top-30

Journals

5
10
15
20
25
Nature Communications
21 publications, 3.22%
bioRxiv
16 publications, 2.45%
Scientific Reports
15 publications, 2.3%
Nature Methods
9 publications, 1.38%
Cytometry. Part A : the journal of the International Society for Analytical Cytology
9 publications, 1.38%
Methods in Molecular Biology
9 publications, 1.38%
eLife
9 publications, 1.38%
SLAS Discovery
8 publications, 1.23%
PLoS ONE
8 publications, 1.23%
PLoS Computational Biology
8 publications, 1.23%
Communications Biology
7 publications, 1.07%
Lab on a Chip
7 publications, 1.07%
Bioinformatics
7 publications, 1.07%
Cell Systems
6 publications, 0.92%
Nature Protocols
5 publications, 0.77%
Science advances
5 publications, 0.77%
Journal of Cell Science
4 publications, 0.61%
BMC Bioinformatics
4 publications, 0.61%
Cell Reports Methods
4 publications, 0.61%
Computational and Structural Biotechnology Journal
4 publications, 0.61%
Trends in Biotechnology
4 publications, 0.61%
Toxicology and Applied Pharmacology
4 publications, 0.61%
Current Opinion in Chemical Biology
4 publications, 0.61%
Angewandte Chemie
4 publications, 0.61%
Angewandte Chemie - International Edition
4 publications, 0.61%
Lecture Notes in Computer Science
4 publications, 0.61%
Molecular Biology of the Cell
4 publications, 0.61%
Journal of Cell Biology
3 publications, 0.46%
Nature Reviews Methods Primers
3 publications, 0.46%
5
10
15
20
25

Publishers

20
40
60
80
100
120
140
Cold Spring Harbor Laboratory
136 publications, 20.83%
Springer Nature
128 publications, 19.6%
Elsevier
107 publications, 16.39%
Wiley
55 publications, 8.42%
Royal Society of Chemistry (RSC)
22 publications, 3.37%
MDPI
20 publications, 3.06%
American Chemical Society (ACS)
19 publications, 2.91%
Public Library of Science (PLoS)
19 publications, 2.91%
Institute of Electrical and Electronics Engineers (IEEE)
19 publications, 2.91%
Frontiers Media S.A.
18 publications, 2.76%
Oxford University Press
13 publications, 1.99%
SAGE
10 publications, 1.53%
eLife Sciences Publications
9 publications, 1.38%
American Association for the Advancement of Science (AAAS)
7 publications, 1.07%
The Company of Biologists
6 publications, 0.92%
IOP Publishing
5 publications, 0.77%
Taylor & Francis
4 publications, 0.61%
Rockefeller University Press
4 publications, 0.61%
American Association for Cancer Research (AACR)
4 publications, 0.61%
American Society for Cell Biology (ASCB)
4 publications, 0.61%
AIP Publishing
3 publications, 0.46%
American Society for Microbiology
3 publications, 0.46%
IGI Global
3 publications, 0.46%
Impact Journals
2 publications, 0.31%
Mary Ann Liebert
2 publications, 0.31%
Portland Press
2 publications, 0.31%
Hindawi Limited
2 publications, 0.31%
SPIE-Intl Soc Optical Eng
2 publications, 0.31%
Annual Reviews
2 publications, 0.31%
20
40
60
80
100
120
140
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
653
Share
Cite this
GOST |
Cite this
GOST Copy
Caicedo J. C. et al. Data-analysis strategies for image-based cell profiling // Nature Methods. 2017. Vol. 14. No. 9. pp. 849-863.
GOST all authors (up to 50) Copy
Caicedo J. C., Cooper S., Heigwer F., Warchal S., Qiu P., Molnár C., Vasilevich A. S., Barry J. D., Bansal H. S., Kraus O., Wawer M., Paavolainen L., Herrmann M. D., Rohban M., Hung J., Hennig H., Concannon J., Smith I., Clemons P. A., Singh S., Rees P., Horvath P., Linington R. G., Carpenter A. E. Data-analysis strategies for image-based cell profiling // Nature Methods. 2017. Vol. 14. No. 9. pp. 849-863.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/nmeth.4397
UR - https://doi.org/10.1038/nmeth.4397
TI - Data-analysis strategies for image-based cell profiling
T2 - Nature Methods
AU - Caicedo, Juan C.
AU - Cooper, Sam
AU - Heigwer, Florian
AU - Warchal, Scott
AU - Qiu, Peng
AU - Molnár, Csaba
AU - Vasilevich, Aliaksei S
AU - Barry, Joseph D.
AU - Bansal, Harmanjit Singh
AU - Kraus, Oren
AU - Wawer, Mathias
AU - Paavolainen, Lassi
AU - Herrmann, Markus D
AU - Rohban, Mohammad
AU - Hung, Jane
AU - Hennig, Holger
AU - Concannon, John
AU - Smith, Ian
AU - Clemons, Paul A
AU - Singh, Shantanu
AU - Rees, Paul
AU - Horvath, Peter
AU - Linington, Roger G
AU - Carpenter, Anne E.
PY - 2017
DA - 2017/09/01
PB - Springer Nature
SP - 849-863
IS - 9
VL - 14
PMID - 28858338
SN - 1548-7091
SN - 1548-7105
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2017_Caicedo,
author = {Juan C. Caicedo and Sam Cooper and Florian Heigwer and Scott Warchal and Peng Qiu and Csaba Molnár and Aliaksei S Vasilevich and Joseph D. Barry and Harmanjit Singh Bansal and Oren Kraus and Mathias Wawer and Lassi Paavolainen and Markus D Herrmann and Mohammad Rohban and Jane Hung and Holger Hennig and John Concannon and Ian Smith and Paul A Clemons and Shantanu Singh and Paul Rees and Peter Horvath and Roger G Linington and Anne E. Carpenter},
title = {Data-analysis strategies for image-based cell profiling},
journal = {Nature Methods},
year = {2017},
volume = {14},
publisher = {Springer Nature},
month = {sep},
url = {https://doi.org/10.1038/nmeth.4397},
number = {9},
pages = {849--863},
doi = {10.1038/nmeth.4397}
}
MLA
Cite this
MLA Copy
Caicedo, Juan C., et al. “Data-analysis strategies for image-based cell profiling.” Nature Methods, vol. 14, no. 9, Sep. 2017, pp. 849-863. https://doi.org/10.1038/nmeth.4397.