Open Access
Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays.
Тип публикации: Journal Article
Дата публикации: 2020-02-04
scimago Q1
wos Q1
БС1
SJR: 5.018
CiteScore: 30.1
Impact factor: 23.4
ISSN: 20477538, 20955545
PubMed ID:
32047625
Electronic, Optical and Magnetic Materials
Atomic and Molecular Physics, and Optics
Краткое описание
Chemically synthesized near-infrared to mid-infrared (IR) colloidal quantum dots (QDs) offer a promising platform for the realization of devices including emitters, detectors, security, and sensor systems. However, at longer wavelengths, the quantum yield of such QDs decreases as the radiative emission rate drops following Fermi’s golden rule, while non-radiative recombination channels compete with light emission. Control over the radiative and non-radiative channels of the IR-emitting QDs is crucially important to improve the performance of IR-range devices. Here, we demonstrate strong enhancement of the spontaneous emission rate of near- to mid-IR HgTe QDs coupled to periodically arranged plasmonic nanoantennas, in the form of nanobumps, produced on the surface of glass-supported Au films via ablation-free direct femtosecond laser printing. The enhancement is achieved by simultaneous radiative coupling of the emission that spectrally matches the first-order lattice resonance of the arrays, as well as more efficient photoluminescence excitation provided by coupling of the pump radiation to the local surface plasmon resonances of the isolated nanoantennas. Moreover, coupling of the HgTe QDs to the lattice plasmons reduces the influence of non-radiative decay losses mediated by the formation of polarons formed between QD surface-trapped carriers and the IR absorption bands of dodecanethiol used as a ligand on the QDs, allowing us to improve the shape of the emission spectrum through a reduction in the spectral dip related to this ligand coupling. Considering the ease of the chemical synthesis and processing of the HgTe QDs combined with the scalability of the direct laser fabrication of nanoantennas with tailored plasmonic responses, our results provide an important step towards the design of IR-range devices for various applications. By boosting the emission of semiconductor quantum dots, scientists have laid the foundations for new technologies for a range of applications, including night vision and security systems, sensors and spectroscopy tools. Colloidal semiconductor quantum dots (QDs) with high photoluminescence quantum yield (PLQY) in the near-to-mid infrared range are a promising new material for use in sensing technologies. However, at longer wavelengths, the quantum yield drops, limiting their applications. An international team of researchers, led by Andrey Rogach and colleagues from the City University of Hong Kong, has now achieved a five-fold enhancement in the PLQY of mercury telluride QDs. By coupling the QDs to a lattice of plasmonic nanoantennas arranged on gold films, they were able to control the radiative and non-radiative channels of the QDs. The work is an important step towards infrared-range devices.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
|
|
|
Light: Science and Applications
4 публикации, 6.25%
|
|
|
Journal of Physical Chemistry C
4 публикации, 6.25%
|
|
|
Advanced Functional Materials
4 публикации, 6.25%
|
|
|
Applied Surface Science
3 публикации, 4.69%
|
|
|
Advanced Optical Materials
3 публикации, 4.69%
|
|
|
Nano Letters
3 публикации, 4.69%
|
|
|
Applied Physics Letters
2 публикации, 3.13%
|
|
|
Chemistry of Materials
2 публикации, 3.13%
|
|
|
ACS Nano
2 публикации, 3.13%
|
|
|
Advanced Materials Technologies
2 публикации, 3.13%
|
|
|
Laser and Photonics Reviews
1 публикация, 1.56%
|
|
|
Optics and Spectroscopy (English translation of Optika i Spektroskopiya)
1 публикация, 1.56%
|
|
|
Nanomaterials
1 публикация, 1.56%
|
|
|
Materials
1 публикация, 1.56%
|
|
|
Nano-Micro Letters
1 публикация, 1.56%
|
|
|
Microchimica Acta
1 публикация, 1.56%
|
|
|
Nature Photonics
1 публикация, 1.56%
|
|
|
Physical Chemistry Chemical Physics
1 публикация, 1.56%
|
|
|
Materials Today: Proceedings
1 публикация, 1.56%
|
|
|
Carbon
1 публикация, 1.56%
|
|
|
Journal of Physics: Conference Series
1 публикация, 1.56%
|
|
|
Chemical Engineering Journal
1 публикация, 1.56%
|
|
|
Renewable Energy
1 публикация, 1.56%
|
|
|
Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology
1 публикация, 1.56%
|
|
|
Advanced Science
1 публикация, 1.56%
|
|
|
Chemical Reviews
1 публикация, 1.56%
|
|
|
Journal of Materials Chemistry A
1 публикация, 1.56%
|
|
|
Journal of Materials Chemistry C
1 публикация, 1.56%
|
|
|
Journal of the Optical Society of America B: Optical Physics
1 публикация, 1.56%
|
|
|
1
2
3
4
|
Издатели
|
2
4
6
8
10
12
14
|
|
|
American Chemical Society (ACS)
13 публикаций, 20.31%
|
|
|
Wiley
12 публикаций, 18.75%
|
|
|
Elsevier
11 публикаций, 17.19%
|
|
|
Springer Nature
8 публикаций, 12.5%
|
|
|
Royal Society of Chemistry (RSC)
4 публикации, 6.25%
|
|
|
Pleiades Publishing
3 публикации, 4.69%
|
|
|
AIP Publishing
2 публикации, 3.13%
|
|
|
MDPI
2 публикации, 3.13%
|
|
|
Optica Publishing Group
2 публикации, 3.13%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
2 публикации, 3.13%
|
|
|
IOP Publishing
1 публикация, 1.56%
|
|
|
American Physical Society (APS)
1 публикация, 1.56%
|
|
|
The Russian Academy of Sciences
1 публикация, 1.56%
|
|
|
SPIE-Intl Soc Optical Eng
1 публикация, 1.56%
|
|
|
2
4
6
8
10
12
14
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
64
Всего цитирований:
64
Цитирований c 2025:
11
(17.19%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Sergeev A. A. et al. Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays. // Light: Science and Applications. 2020. Vol. 9. No. 1. 16
ГОСТ со всеми авторами (до 50)
Скопировать
Sergeev A. A., Pavlov D. V., Kuchmizhak A. A., Lapine M. V., Yiu W. K., Dong Y., KE N., Juodkazis S., Zhao N., Kershaw S., Rogach A. L. Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays. // Light: Science and Applications. 2020. Vol. 9. No. 1. 16
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1038/s41377-020-0247-6
UR - https://doi.org/10.1038/s41377-020-0247-6
TI - Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays.
T2 - Light: Science and Applications
AU - Sergeev, A. A.
AU - Pavlov, D. V.
AU - Kuchmizhak, A A
AU - Lapine, M V
AU - Yiu, W K
AU - Dong, Y.
AU - KE, N.
AU - Juodkazis, Saulius
AU - Zhao, N.
AU - Kershaw, S.V.
AU - Rogach, Andrey L.
PY - 2020
DA - 2020/02/04
PB - Springer Nature
IS - 1
VL - 9
PMID - 32047625
SN - 2047-7538
SN - 2095-5545
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2020_Sergeev,
author = {A. A. Sergeev and D. V. Pavlov and A A Kuchmizhak and M V Lapine and W K Yiu and Y. Dong and N. KE and Saulius Juodkazis and N. Zhao and S.V. Kershaw and Andrey L. Rogach},
title = {Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays.},
journal = {Light: Science and Applications},
year = {2020},
volume = {9},
publisher = {Springer Nature},
month = {feb},
url = {https://doi.org/10.1038/s41377-020-0247-6},
number = {1},
pages = {16},
doi = {10.1038/s41377-020-0247-6}
}