Open Access
Open access
Nature Communications, volume 11, issue 1, publication number 1098

A combined experimental and modelling approach for the Weimberg pathway optimisation

Lu Shen 1
Martha Kohlhaas 2
Junichi Enoki 3
Roland Meier 4
Bernhard Schonenberger 4
Robert Kourist 3, 6
Felix Niemeyer 2
David Van Niekerk 7
Christopher Bräsen 1
Jochen Niemeyer 2
Jacky L. Snoep 7, 8
Bettina Siebers 1
Show full list: 13 authors
Publication typeJournal Article
Publication date2020-02-27
scimago Q1
SJR4.887
CiteScore24.9
Impact factor14.7
ISSN20411723
General Chemistry
General Biochemistry, Genetics and Molecular Biology
General Physics and Astronomy
Abstract
The oxidative Weimberg pathway for the five-step pentose degradation to α-ketoglutarate is a key route for sustainable bioconversion of lignocellulosic biomass to added-value products and biofuels. The oxidative pathway from Caulobacter crescentus has been employed in in-vivo metabolic engineering with intact cells and in in-vitro enzyme cascades. The performance of such engineering approaches is often hampered by systems complexity, caused by non-linear kinetics and allosteric regulatory mechanisms. Here we report an iterative approach to construct and validate a quantitative model for the Weimberg pathway. Two sensitive points in pathway performance have been identified as follows: (1) product inhibition of the dehydrogenases (particularly in the absence of an efficient NAD+ recycling mechanism) and (2) balancing the activities of the dehydratases. The resulting model is utilized to design enzyme cascades for optimized conversion and to analyse pathway performance in C. cresensus cell-free extracts. Metabolic engineering is often hampered by non-linear kinetics and allosteric regulatory mechanisms. Here, the authors construct a quantitative model for the pentose degradation Weimberg pathway in Caulobacter crescentus and demonstrate its biotechnological applications in cell-free system and standard metabolic engineering.
Found 

Top-30

Journals

1
2
3
1
2
3

Publishers

2
4
6
8
10
12
14
16
2
4
6
8
10
12
14
16
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?