Open Access
Open access
Nature Communications, volume 13, issue 1, publication number 3248

Catalytic activity imperative for nanoparticle dose enhancement in photon and proton therapy

Lukas R H Gerken 1, 2
Alexander Gogos 1, 2
Fabian H L Starsich 1, 2
Helena David 1
Maren E Gerdes 1
Hans Schiefer 3
Serena Psoroulas 4
David Meer 4
Ludwig Plasswilm 3, 5
Damien C. Weber 4, 5, 6
I. K. Herrmann 1, 2
Show full list: 11 authors
Publication typeJournal Article
Publication date2022-06-06
scimago Q1
SJR4.887
CiteScore24.9
Impact factor14.7
ISSN20411723
General Chemistry
General Biochemistry, Genetics and Molecular Biology
Multidisciplinary
General Physics and Astronomy
Abstract
Nanoparticle-based radioenhancement is a promising strategy for extending the therapeutic ratio of radiotherapy. While (pre)clinical results are encouraging, sound mechanistic understanding of nanoparticle radioenhancement, especially the effects of nanomaterial selection and irradiation conditions, has yet to be achieved. Here, we investigate the radioenhancement mechanisms of selected metal oxide nanomaterials (including SiO2, TiO2, WO3 and HfO2), TiN and Au nanoparticles for radiotherapy utilizing photons (150 kVp and 6 MV) and 100 MeV protons. While Au nanoparticles show outstanding radioenhancement properties in kV irradiation settings, where the photoelectric effect is dominant, these properties are attenuated to baseline levels for clinically more relevant irradiation with MV photons and protons. In contrast, HfO2 nanoparticles retain some of their radioenhancement properties in MV photon and proton therapies. Interestingly, TiO2 nanoparticles, which have a comparatively low effective atomic number, show significant radioenhancement efficacies in all three irradiation settings, which can be attributed to the strong radiocatalytic activity of TiO2, leading to the formation of hydroxyl radicals, and nuclear interactions with protons. Taken together, our data enable the extraction of general design criteria for nanoparticle radioenhancers for different treatment modalities, paving the way to performance-optimized nanotherapeutics for precision radiotherapy. Nanoparticles have recently received attention in radiation therapy since they can act as radioenhancers. In this article, the authors report on the dose enhancement capabilities of a series of nanoparticles based on their metal core composition and beam characteristics, obtaining designing criteria for their optimal performance in specific radiotreatments.
Found 
Found 

Top-30

Journals

1
2
3
1
2
3

Publishers

2
4
6
8
10
2
4
6
8
10
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST | RIS | BibTex
Found error?