Open Access
Open access
Nature Communications, volume 14, issue 1, publication number 1628

Diamagnetic mechanism of critical current non-reciprocity in multilayered superconductors

Publication typeJournal Article
Publication date2023-03-23
scimago Q1
SJR4.887
CiteScore24.9
Impact factor14.7
ISSN20411723
General Chemistry
General Biochemistry, Genetics and Molecular Biology
Multidisciplinary
General Physics and Astronomy
Abstract

The suggestion that non-reciprocal critical current (NRC) may be an intrinsic property of non-centrosymmetric superconductors has generated renewed theoretical and experimental interest motivated by an analogy with the non-reciprocal resistivity due to the magnetochiral effect in uniform materials with broken spatial and time-reversal symmetry. Theoretically it has been understood that terms linear in the Cooper pair momentum do not contribute to NRC, although the role of higher-order terms remains unclear. In this work we show that critical current non-reciprocity is a generic property of multilayered superconductor structures in the presence of magnetic field-generated diamagnetic currents. In the regime of an intermediate coupling between the layers, the Josephson vortices are predicted to form at high fields and currents. Experimentally, we report the observation of NRC in nanowires fabricated from InAs/Al heterostructures. The effect is independent of the crystallographic orientation of the wire, ruling out an intrinsic origin of NRC. Non-monotonic NRC evolution with magnetic field is consistent with the generation of diamagnetic currents and formation of the Josephson vortices. This extrinsic NRC mechanism can be used to design novel devices for superconducting circuits.

Found 
Found 

Top-30

Journals

2
4
6
8
10
12
2
4
6
8
10
12

Publishers

2
4
6
8
10
12
14
16
18
2
4
6
8
10
12
14
16
18
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?