Open Access
Open access
volume 15 issue 1 publication number 4973

AI-based histopathology image analysis reveals a distinct subset of endometrial cancers

Amirali Darbandsari 1
Hossein Farahani 2, 3
Maryam Asadi 2
Matthew Wiens 2
Dawn Cochrane 4
Ali Khajegili Mirabadi 2
Amy Jamieson 5
David Farnell 3, 6
Pouya Ahmadvand 2
Douglas Maxwell 4
Samuel Leung 4
Purang Abolmaesumi 1
Steve M. R. Jones 7
Aline Talhouk 5
Stefan Kommoss 8
C. BLAKE GILKS 3, 6
David G. Huntsman 3, 4
Naveena Singh 3, 6
James G. McAlpine 5
Ali Bashashati 2, 3
Publication typeJournal Article
Publication date2024-06-26
scimago Q1
wos Q1
SJR4.761
CiteScore23.4
Impact factor15.7
ISSN20411723
Abstract

Endometrial cancer (EC) has four molecular subtypes with strong prognostic value and therapeutic implications. The most common subtype (NSMP; No Specific Molecular Profile) is assigned after exclusion of the defining features of the other three molecular subtypes and includes patients with heterogeneous clinical outcomes. In this study, we employ artificial intelligence (AI)-powered histopathology image analysis to differentiate between p53abn and NSMP EC subtypes and consequently identify a sub-group of NSMP EC patients that has markedly inferior progression-free and disease-specific survival (termed ‘p53abn-like NSMP’), in a discovery cohort of 368 patients and two independent validation cohorts of 290 and 614 from other centers. Shallow whole genome sequencing reveals a higher burden of copy number abnormalities in the ‘p53abn-like NSMP’ group compared to NSMP, suggesting that this group is biologically distinct compared to other NSMP ECs. Our work demonstrates the power of AI to detect prognostically different and otherwise unrecognizable subsets of EC where conventional and standard molecular or pathologic criteria fall short, refining image-based tumor classification. This study’s findings are applicable exclusively to females.

Found 
Found 

Top-30

Journals

1
npj Precision Oncology
1 publication, 4.76%
Clinical and Translational Science
1 publication, 4.76%
Surgical and Experimental Pathology
1 publication, 4.76%
Biomedical Optics Express
1 publication, 4.76%
Abdominal Radiology
1 publication, 4.76%
Bioinformatics
1 publication, 4.76%
Computers in Biology and Medicine
1 publication, 4.76%
Frontiers in Oncology
1 publication, 4.76%
Journal of Gastrointestinal Surgery
1 publication, 4.76%
Cancer
1 publication, 4.76%
Cells
1 publication, 4.76%
Neoplasia
1 publication, 4.76%
Chinese Medical Journal
1 publication, 4.76%
Radiologia Medica
1 publication, 4.76%
Orphanet Journal of Rare Diseases
1 publication, 4.76%
Intelligent Medicine
1 publication, 4.76%
1

Publishers

1
2
3
4
5
6
Elsevier
6 publications, 28.57%
Springer Nature
5 publications, 23.81%
Institute of Electrical and Electronics Engineers (IEEE)
3 publications, 14.29%
Wiley
2 publications, 9.52%
Optica Publishing Group
1 publication, 4.76%
Oxford University Press
1 publication, 4.76%
Frontiers Media S.A.
1 publication, 4.76%
MDPI
1 publication, 4.76%
Ovid Technologies (Wolters Kluwer Health)
1 publication, 4.76%
1
2
3
4
5
6
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
21
Share
Cite this
GOST |
Cite this
GOST Copy
Darbandsari A. et al. AI-based histopathology image analysis reveals a distinct subset of endometrial cancers // Nature Communications. 2024. Vol. 15. No. 1. 4973
GOST all authors (up to 50) Copy
Darbandsari A., Farahani H., Asadi M., Wiens M., Cochrane D., Khajegili Mirabadi A., Jamieson A., Farnell D., Ahmadvand P., Maxwell D., Leung S., Abolmaesumi P., Jones S. M. R., Talhouk A., Kommoss S., GILKS C. B., Huntsman D. G., Singh N., McAlpine J. G., Bashashati A. AI-based histopathology image analysis reveals a distinct subset of endometrial cancers // Nature Communications. 2024. Vol. 15. No. 1. 4973
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41467-024-49017-2
UR - https://www.nature.com/articles/s41467-024-49017-2
TI - AI-based histopathology image analysis reveals a distinct subset of endometrial cancers
T2 - Nature Communications
AU - Darbandsari, Amirali
AU - Farahani, Hossein
AU - Asadi, Maryam
AU - Wiens, Matthew
AU - Cochrane, Dawn
AU - Khajegili Mirabadi, Ali
AU - Jamieson, Amy
AU - Farnell, David
AU - Ahmadvand, Pouya
AU - Maxwell, Douglas
AU - Leung, Samuel
AU - Abolmaesumi, Purang
AU - Jones, Steve M. R.
AU - Talhouk, Aline
AU - Kommoss, Stefan
AU - GILKS, C. BLAKE
AU - Huntsman, David G.
AU - Singh, Naveena
AU - McAlpine, James G.
AU - Bashashati, Ali
PY - 2024
DA - 2024/06/26
PB - Springer Nature
IS - 1
VL - 15
PMID - 38926357
SN - 2041-1723
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Darbandsari,
author = {Amirali Darbandsari and Hossein Farahani and Maryam Asadi and Matthew Wiens and Dawn Cochrane and Ali Khajegili Mirabadi and Amy Jamieson and David Farnell and Pouya Ahmadvand and Douglas Maxwell and Samuel Leung and Purang Abolmaesumi and Steve M. R. Jones and Aline Talhouk and Stefan Kommoss and C. BLAKE GILKS and David G. Huntsman and Naveena Singh and James G. McAlpine and Ali Bashashati},
title = {AI-based histopathology image analysis reveals a distinct subset of endometrial cancers},
journal = {Nature Communications},
year = {2024},
volume = {15},
publisher = {Springer Nature},
month = {jun},
url = {https://www.nature.com/articles/s41467-024-49017-2},
number = {1},
pages = {4973},
doi = {10.1038/s41467-024-49017-2}
}