volume 21 issue 4 pages 570-576

Simulating two-dimensional lattice gauge theories on a qudit quantum computer

Michael Meth 1
Jinglei Zhang 2, 3
Jan F. Haase 2, 3, 4
Claire L. Edmunds 1
Lukas Postler 1
Andrew J. Jena 2, 3
A Steiner 1
Luca Dellantonio 2, 3, 5
R. Blatt 1, 6, 7
P. Zoller 6, 8
Thomas Monz 1, 7
Philipp Schindler 1
Christine Muschik 2, 3, 9
M. Ringbauer 1
Publication typeJournal Article
Publication date2025-03-25
scimago Q1
wos Q1
SJR7.125
CiteScore29.1
Impact factor18.4
ISSN17452473, 17452481
Abstract
Particle physics describes the interplay of matter and forces through gauge theories. Yet, the intrinsic quantum nature of gauge theories makes important problems notoriously difficult for classical computational techniques. Quantum computers offer a promising way to overcome these roadblocks. We demonstrate two essential requirements on this path: first, we perform a quantum computation of the properties of the basic building block of two-dimensional lattice quantum electrodynamics, involving both gauge fields and matter. Second, we show how to refine the gauge-field discretization beyond its minimal representation, using a trapped-ion qudit quantum processor, where quantum information is encoded in several states per ion. Such qudits are ideally suited for describing gauge fields, which are naturally high dimensional, leading to reduced register size and circuit complexity. We prepare the ground state of the model using a variational quantum eigensolver and observe the effect of dynamical matter on quantized magnetic fields. By controlling the qudit dimension, we also show how to seamlessly observe the effect of different gauge-field truncations. Finally, we experimentally study the dynamics of pair creation and magnetic energy. Our results open the door for hardware-efficient quantum simulations of gauge theories with qudits in near-term quantum devices. Qubit-based simulations of gauge theories are challenging as gauge fields require high-dimensional encoding. Now a quantum electrodynamics model has been demonstrated using trapped-ion qudits, which encode information in multiple states of ions.
Found 
Found 

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
27
Share
Cite this
GOST |
Cite this
GOST Copy
Meth M. et al. Simulating two-dimensional lattice gauge theories on a qudit quantum computer // Nature Physics. 2025. Vol. 21. No. 4. pp. 570-576.
GOST all authors (up to 50) Copy
Meth M., Zhang J., Haase J. F., Edmunds C. L., Postler L., Jena A. J., Steiner A., Dellantonio L., Blatt R., Zoller P., Monz T., Schindler P., Muschik C., Ringbauer M. Simulating two-dimensional lattice gauge theories on a qudit quantum computer // Nature Physics. 2025. Vol. 21. No. 4. pp. 570-576.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41567-025-02797-w
UR - https://www.nature.com/articles/s41567-025-02797-w
TI - Simulating two-dimensional lattice gauge theories on a qudit quantum computer
T2 - Nature Physics
AU - Meth, Michael
AU - Zhang, Jinglei
AU - Haase, Jan F.
AU - Edmunds, Claire L.
AU - Postler, Lukas
AU - Jena, Andrew J.
AU - Steiner, A
AU - Dellantonio, Luca
AU - Blatt, R.
AU - Zoller, P.
AU - Monz, Thomas
AU - Schindler, Philipp
AU - Muschik, Christine
AU - Ringbauer, M.
PY - 2025
DA - 2025/03/25
PB - Springer Nature
SP - 570-576
IS - 4
VL - 21
SN - 1745-2473
SN - 1745-2481
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Meth,
author = {Michael Meth and Jinglei Zhang and Jan F. Haase and Claire L. Edmunds and Lukas Postler and Andrew J. Jena and A Steiner and Luca Dellantonio and R. Blatt and P. Zoller and Thomas Monz and Philipp Schindler and Christine Muschik and M. Ringbauer},
title = {Simulating two-dimensional lattice gauge theories on a qudit quantum computer},
journal = {Nature Physics},
year = {2025},
volume = {21},
publisher = {Springer Nature},
month = {mar},
url = {https://www.nature.com/articles/s41567-025-02797-w},
number = {4},
pages = {570--576},
doi = {10.1038/s41567-025-02797-w}
}
MLA
Cite this
MLA Copy
Meth, Michael, et al. “Simulating two-dimensional lattice gauge theories on a qudit quantum computer.” Nature Physics, vol. 21, no. 4, Mar. 2025, pp. 570-576. https://www.nature.com/articles/s41567-025-02797-w.