Spatially resolved steady-state negative capacitance
Ajay K Yadav
1
,
Kayla X Nguyen
2
,
Zijian Hong
3
,
Pablo García Fernández
4
,
Pablo Aguado Puente
5
,
Christopher T Nelson
6, 7
,
Sujit Das
7
,
Bhagwati Prasad
7
,
Daewoong Kwon
1
,
Suraj Cheema
7
,
Asif I Khan
1, 8
,
Chenming Hu
1
,
JORGE ÍÑIGUEZ
9
,
Javier Junquera
4
,
Long-Qing Chen
3
,
David A. Muller
10, 11
,
Ramesh Ramamoorthy
7
,
Sayeef Salahuddin
1
1
3
Publication type: Journal Article
Publication date: 2019-01-11
scimago Q1
wos Q1
SJR: 18.288
CiteScore: 78.1
Impact factor: 48.5
ISSN: 00280836, 14764687
PubMed ID:
30643207
Multidisciplinary
Abstract
Negative capacitance is a newly discovered state of ferroelectric materials that holds promise for electronics applications by exploiting a region of thermodynamic space that is normally not accessible1–14. Although existing reports of negative capacitance substantiate the importance of this phenomenon, they have focused on its macroscale manifestation. These manifestations demonstrate possible uses of steady-state negative capacitance—for example, enhancing the capacitance of a ferroelectric–dielectric heterostructure4,7,14 or improving the subthreshold swing of a transistor8–12. Yet they constitute only indirect measurements of the local state of negative capacitance in which the ferroelectric resides. Spatial mapping of this phenomenon would help its understanding at a microscopic scale and also help to achieve optimal design of devices with potential technological applications. Here we demonstrate a direct measurement of steady-state negative capacitance in a ferroelectric–dielectric heterostructure. We use electron microscopy complemented by phase-field and first-principles-based (second-principles) simulations in SrTiO3/PbTiO3 superlattices to directly determine, with atomic resolution, the local regions in the ferroelectric material where a state of negative capacitance is stabilized. Simultaneous vector mapping of atomic displacements (related to a complex pattern in the polarization field), in conjunction with reconstruction of the local electric field, identify the negative capacitance regions as those with higher energy density and larger polarizability: the domain walls where the polarization is suppressed. Imaging steady-state negative capacitance in SrTiO3/PbTiO3 superlattices with atomic resolution provides solid microscale support for this phenomenon.
Found
Nothing found, try to update filter.
Found
Nothing found, try to update filter.
Top-30
Journals
|
5
10
15
20
25
|
|
|
Nature Communications
23 publications, 6.63%
|
|
|
Physical Review B
20 publications, 5.76%
|
|
|
Advanced Materials
18 publications, 5.19%
|
|
|
Journal of Applied Physics
14 publications, 4.03%
|
|
|
Microscopy and Microanalysis
12 publications, 3.46%
|
|
|
IEEE Transactions on Electron Devices
11 publications, 3.17%
|
|
|
Advanced Functional Materials
10 publications, 2.88%
|
|
|
Nano Letters
10 publications, 2.88%
|
|
|
Advanced Electronic Materials
8 publications, 2.31%
|
|
|
IEEE Electron Device Letters
8 publications, 2.31%
|
|
|
Applied Physics Letters
7 publications, 2.02%
|
|
|
Acta Materialia
7 publications, 2.02%
|
|
|
ACS applied materials & interfaces
6 publications, 1.73%
|
|
|
Nature
6 publications, 1.73%
|
|
|
APL Materials
5 publications, 1.44%
|
|
|
ACS Nano
5 publications, 1.44%
|
|
|
Science advances
5 publications, 1.44%
|
|
|
Acta Physica Sinica
5 publications, 1.44%
|
|
|
Physical Review Letters
4 publications, 1.15%
|
|
|
Physical Review Applied
4 publications, 1.15%
|
|
|
Materials
4 publications, 1.15%
|
|
|
Nature Materials
4 publications, 1.15%
|
|
|
Nature Electronics
4 publications, 1.15%
|
|
|
Nanoscale
4 publications, 1.15%
|
|
|
Small
4 publications, 1.15%
|
|
|
Physical Review Materials
3 publications, 0.86%
|
|
|
Nanomaterials
3 publications, 0.86%
|
|
|
Scientific Reports
3 publications, 0.86%
|
|
|
Journal of Materiomics
3 publications, 0.86%
|
|
|
5
10
15
20
25
|
Publishers
|
10
20
30
40
50
60
|
|
|
Springer Nature
60 publications, 17.29%
|
|
|
Wiley
54 publications, 15.56%
|
|
|
Elsevier
35 publications, 10.09%
|
|
|
American Physical Society (APS)
34 publications, 9.8%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
33 publications, 9.51%
|
|
|
AIP Publishing
29 publications, 8.36%
|
|
|
American Chemical Society (ACS)
26 publications, 7.49%
|
|
|
Oxford University Press
14 publications, 4.03%
|
|
|
MDPI
13 publications, 3.75%
|
|
|
Royal Society of Chemistry (RSC)
11 publications, 3.17%
|
|
|
IOP Publishing
10 publications, 2.88%
|
|
|
American Association for the Advancement of Science (AAAS)
8 publications, 2.31%
|
|
|
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
5 publications, 1.44%
|
|
|
Taylor & Francis
3 publications, 0.86%
|
|
|
Cambridge University Press
2 publications, 0.58%
|
|
|
Chinese Ceramic Society
2 publications, 0.58%
|
|
|
Annual Reviews
2 publications, 0.58%
|
|
|
The Electrochemical Society
1 publication, 0.29%
|
|
|
Science in China Press
1 publication, 0.29%
|
|
|
Japan Society of Applied Physics
1 publication, 0.29%
|
|
|
Gazi University Journal of Science Part A: Engineering and Innovation
1 publication, 0.29%
|
|
|
Association for Computing Machinery (ACM)
1 publication, 0.29%
|
|
|
10
20
30
40
50
60
|
- We do not take into account publications without a DOI.
- Statistics recalculated weekly.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
347
Total citations:
347
Citations from 2024:
113
(32.56%)
Cite this
GOST |
RIS |
BibTex |
MLA
Cite this
GOST
Copy
Yadav A. K. et al. Spatially resolved steady-state negative capacitance // Nature. 2019. Vol. 565. No. 7740. pp. 468-471.
GOST all authors (up to 50)
Copy
Yadav A. K., Nguyen K. X., Hong Z., García Fernández P., Aguado Puente P., Nelson C. T., Das S., Prasad B., Kwon D., Cheema S., Khan A. I., Hu C., ÍÑIGUEZ J., Junquera J., Chen L., Muller D. A., Ramamoorthy R., Salahuddin S. Spatially resolved steady-state negative capacitance // Nature. 2019. Vol. 565. No. 7740. pp. 468-471.
Cite this
RIS
Copy
TY - JOUR
DO - 10.1038/s41586-018-0855-y
UR - https://doi.org/10.1038/s41586-018-0855-y
TI - Spatially resolved steady-state negative capacitance
T2 - Nature
AU - Yadav, Ajay K
AU - Nguyen, Kayla X
AU - Hong, Zijian
AU - García Fernández, Pablo
AU - Aguado Puente, Pablo
AU - Nelson, Christopher T
AU - Das, Sujit
AU - Prasad, Bhagwati
AU - Kwon, Daewoong
AU - Cheema, Suraj
AU - Khan, Asif I
AU - Hu, Chenming
AU - ÍÑIGUEZ, JORGE
AU - Junquera, Javier
AU - Chen, Long-Qing
AU - Muller, David A.
AU - Ramamoorthy, Ramesh
AU - Salahuddin, Sayeef
PY - 2019
DA - 2019/01/11
PB - Springer Nature
SP - 468-471
IS - 7740
VL - 565
PMID - 30643207
SN - 0028-0836
SN - 1476-4687
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2019_Yadav,
author = {Ajay K Yadav and Kayla X Nguyen and Zijian Hong and Pablo García Fernández and Pablo Aguado Puente and Christopher T Nelson and Sujit Das and Bhagwati Prasad and Daewoong Kwon and Suraj Cheema and Asif I Khan and Chenming Hu and JORGE ÍÑIGUEZ and Javier Junquera and Long-Qing Chen and David A. Muller and Ramesh Ramamoorthy and Sayeef Salahuddin},
title = {Spatially resolved steady-state negative capacitance},
journal = {Nature},
year = {2019},
volume = {565},
publisher = {Springer Nature},
month = {jan},
url = {https://doi.org/10.1038/s41586-018-0855-y},
number = {7740},
pages = {468--471},
doi = {10.1038/s41586-018-0855-y}
}
Cite this
MLA
Copy
Yadav, Ajay K., et al. “Spatially resolved steady-state negative capacitance.” Nature, vol. 565, no. 7740, Jan. 2019, pp. 468-471. https://doi.org/10.1038/s41586-018-0855-y.