volume 606 issue 7912 pages 75-81

Quantum computational advantage with a programmable photonic processor

Lars S Madsen 1
Fabian Laudenbach 1
Mohsen Falamarzi Askarani 1
Fabien Rortais 1
Trevor Vincent 1
Jacob F. F. Bulmer 1
Filippo M. Miatto 1
Leonhard Neuhaus 1
L. G. Helt 1
M J Collins 1
Adriana E Lita 2
Thomas Gerrits 2
Sae Woo Nam 2
Varun D Vaidya 1
Matteo Menotti 1
Ish Dhand 1
Z. Vernon 1
Nicolás Quesada 1
Jonathan Lavoie 1
Publication typeJournal Article
Publication date2022-06-01
scimago Q1
wos Q1
SJR18.288
CiteScore78.1
Impact factor48.5
ISSN00280836, 14764687
Multidisciplinary
Abstract
A quantum computer attains computational advantage when outperforming the best classical computers running the best-known algorithms on well-defined tasks. No photonic machine offering programmability over all its quantum gates has demonstrated quantum computational advantage: previous machines1,2 were largely restricted to static gate sequences. Earlier photonic demonstrations were also vulnerable to spoofing3, in which classical heuristics produce samples, without direct simulation, lying closer to the ideal distribution than do samples from the quantum hardware. Here we report quantum computational advantage using Borealis, a photonic processor offering dynamic programmability on all gates implemented. We carry out Gaussian boson sampling4 (GBS) on 216 squeezed modes entangled with three-dimensional connectivity5, using a time-multiplexed and photon-number-resolving architecture. On average, it would take more than 9,000 years for the best available algorithms and supercomputers to produce, using exact methods, a single sample from the programmed distribution, whereas Borealis requires only 36 μs. This runtime advantage is over 50 million times as extreme as that reported from earlier photonic machines. Ours constitutes a very large GBS experiment, registering events with up to 219 photons and a mean photon number of 125. This work is a critical milestone on the path to a practical quantum computer, validating key technological features of photonics as a platform for this goal. Gaussian boson sampling is performed on 216 squeezed modes entangled with three-dimensional connectivity5, using Borealis, registering events with up to 219 photons and a mean photon number of 125.
Found 
Found 

Top-30

Journals

10
20
30
40
50
60
70
Physical Review A
70 publications, 9.42%
Physical Review Letters
38 publications, 5.11%
Physical Review Research
30 publications, 4.04%
PRX Quantum
21 publications, 2.83%
Quantum
20 publications, 2.69%
Advanced Quantum Technologies
19 publications, 2.56%
Physical Review Applied
19 publications, 2.56%
Quantum Science and Technology
18 publications, 2.42%
npj Quantum Information
15 publications, 2.02%
Nature Communications
14 publications, 1.88%
Optics Express
14 publications, 1.88%
Optica Quantum
13 publications, 1.75%
New Journal of Physics
11 publications, 1.48%
Nature
10 publications, 1.35%
Nature Photonics
10 publications, 1.35%
Physical Review B
9 publications, 1.21%
Scientific Reports
9 publications, 1.21%
Science advances
9 publications, 1.21%
Entropy
8 publications, 1.08%
Optica
8 publications, 1.08%
Nature Physics
8 publications, 1.08%
EPJ Quantum Technology
8 publications, 1.08%
IEEE Access
7 publications, 0.94%
APL Quantum
7 publications, 0.94%
ACS Photonics
6 publications, 0.81%
Physica Scripta
6 publications, 0.81%
Light: Science and Applications
6 publications, 0.81%
Quantum Machine Intelligence
5 publications, 0.67%
Photonics Research
5 publications, 0.67%
10
20
30
40
50
60
70

Publishers

20
40
60
80
100
120
140
160
180
200
American Physical Society (APS)
193 publications, 25.98%
Springer Nature
136 publications, 18.3%
Institute of Electrical and Electronics Engineers (IEEE)
65 publications, 8.75%
IOP Publishing
50 publications, 6.73%
Optica Publishing Group
49 publications, 6.59%
Elsevier
45 publications, 6.06%
Wiley
29 publications, 3.9%
American Chemical Society (ACS)
24 publications, 3.23%
AIP Publishing
23 publications, 3.1%
MDPI
21 publications, 2.83%
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
20 publications, 2.69%
American Association for the Advancement of Science (AAAS)
14 publications, 1.88%
SPIE-Intl Soc Optical Eng
10 publications, 1.35%
Frontiers Media S.A.
9 publications, 1.21%
Association for Computing Machinery (ACM)
9 publications, 1.21%
Walter de Gruyter
5 publications, 0.67%
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
4 publications, 0.54%
Science in China Press
3 publications, 0.4%
Stichting SciPost
3 publications, 0.4%
Institute for Operations Research and the Management Sciences (INFORMS)
2 publications, 0.27%
Cambridge University Press
2 publications, 0.27%
Royal Society of Chemistry (RSC)
2 publications, 0.27%
Seismological Society of America (SSA)
1 publication, 0.13%
Societa Italiana di Fisica
1 publication, 0.13%
Taylor & Francis
1 publication, 0.13%
IntechOpen
1 publication, 0.13%
proceedings of the vldb endowment
1 publication, 0.13%
Social Science Electronic Publishing
1 publication, 0.13%
American Vacuum Society
1 publication, 0.13%
20
40
60
80
100
120
140
160
180
200
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
746
Share
Cite this
GOST |
Cite this
GOST Copy
Madsen L. S. et al. Quantum computational advantage with a programmable photonic processor // Nature. 2022. Vol. 606. No. 7912. pp. 75-81.
GOST all authors (up to 50) Copy
Madsen L. S., Laudenbach F., Askarani M. F., Rortais F., Vincent T., Bulmer J. F. F., Miatto F. M., Neuhaus L., Helt L. G., Collins M. J., Lita A. E., Gerrits T., Nam S. W., Vaidya V. D., Menotti M., Dhand I., Vernon Z., Quesada N., Lavoie J. Quantum computational advantage with a programmable photonic processor // Nature. 2022. Vol. 606. No. 7912. pp. 75-81.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41586-022-04725-x
UR - https://doi.org/10.1038/s41586-022-04725-x
TI - Quantum computational advantage with a programmable photonic processor
T2 - Nature
AU - Madsen, Lars S
AU - Laudenbach, Fabian
AU - Askarani, Mohsen Falamarzi
AU - Rortais, Fabien
AU - Vincent, Trevor
AU - Bulmer, Jacob F. F.
AU - Miatto, Filippo M.
AU - Neuhaus, Leonhard
AU - Helt, L. G.
AU - Collins, M J
AU - Lita, Adriana E
AU - Gerrits, Thomas
AU - Nam, Sae Woo
AU - Vaidya, Varun D
AU - Menotti, Matteo
AU - Dhand, Ish
AU - Vernon, Z.
AU - Quesada, Nicolás
AU - Lavoie, Jonathan
PY - 2022
DA - 2022/06/01
PB - Springer Nature
SP - 75-81
IS - 7912
VL - 606
PMID - 35650354
SN - 0028-0836
SN - 1476-4687
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2022_Madsen,
author = {Lars S Madsen and Fabian Laudenbach and Mohsen Falamarzi Askarani and Fabien Rortais and Trevor Vincent and Jacob F. F. Bulmer and Filippo M. Miatto and Leonhard Neuhaus and L. G. Helt and M J Collins and Adriana E Lita and Thomas Gerrits and Sae Woo Nam and Varun D Vaidya and Matteo Menotti and Ish Dhand and Z. Vernon and Nicolás Quesada and Jonathan Lavoie},
title = {Quantum computational advantage with a programmable photonic processor},
journal = {Nature},
year = {2022},
volume = {606},
publisher = {Springer Nature},
month = {jun},
url = {https://doi.org/10.1038/s41586-022-04725-x},
number = {7912},
pages = {75--81},
doi = {10.1038/s41586-022-04725-x}
}
MLA
Cite this
MLA Copy
Madsen, Lars S., et al. “Quantum computational advantage with a programmable photonic processor.” Nature, vol. 606, no. 7912, Jun. 2022, pp. 75-81. https://doi.org/10.1038/s41586-022-04725-x.