volume 638 issue 8050 pages 360-364

Directly imaging the cooling flow in the Phoenix cluster

M. Reefe 1
Michael McDonald 1
Marios Chatzikos 2
Jerome Seebeck 3
R. F. Mushotzky 3
Sylvain Veilleux 3
S. W. Allen 4, 5, 6
Matthew Bayliss 7
Michael Calzadilla 1, 8
Rebecca Canning 9
B. Floyd 10
M. Gaspari 11
Julie Hlavacek-Larrondo 12
Brian McNamara 13
]helen Russell 14
Keren Sharon 15
T. Somboonpanyakul 16
Publication typeJournal Article
Publication date2025-02-05
scimago Q1
wos Q1
SJR18.288
CiteScore78.1
Impact factor48.5
ISSN00280836, 14764687
Abstract
In the centres of many galaxy clusters, the hot (approximately 107 kelvin) intracluster medium can become dense enough that it should cool on short timescales1,2. However, the low measured star formation rates in massive central galaxies3–6 and the absence of soft X-ray lines from the cooling gas7–9 suggest that most of this gas never cools. This is known as the cooling flow problem. The latest observations suggest that black hole jets are maintaining the vast majority of gas at high temperatures10–16. A cooling flow has yet to be fully mapped through all the gas phases in any galaxy cluster. Here we present observations of the Phoenix cluster17 using the James Webb Space Telescope to map the [Ne vi] λ 7.652-μm emission line, enabling us to probe the gas at 105.5 kelvin on large scales. These data show extended [Ne vi] emission that is cospatial with the cooling peak in the intracluster medium, the coolest gas phases and the sites of active star formation. Taken together, these imply a recent episode of rapid cooling, causing a short-lived spike in the cooling rate, which we estimate to be 5,000–23,000 solar masses per year. These data provide a large-scale map of gas at temperatures between 105 kelvin and 106 kelvin in a cluster core, and highlight the critical role that black hole feedback has in not only regulating cooling but also promoting it18. Observations of the Phoenix cluster using the James Webb Space Telescope reveal rapid cooling in galaxy cluster cores, driven by black hole jets, with gas temperatures mapped between 105 K and 106 K and cooling rates of 5,000–23,000 M⊙ yr−1.
Found 
Found 

Top-30

Journals

1
Physics
1 publication, 33.33%
Astrophysical Journal
1 publication, 33.33%
Astronomy and Astrophysics
1 publication, 33.33%
1

Publishers

1
American Physical Society (APS)
1 publication, 33.33%
American Astronomical Society
1 publication, 33.33%
EDP Sciences
1 publication, 33.33%
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
3
Share
Cite this
GOST |
Cite this
GOST Copy
Reefe M. et al. Directly imaging the cooling flow in the Phoenix cluster // Nature. 2025. Vol. 638. No. 8050. pp. 360-364.
GOST all authors (up to 50) Copy
Reefe M., McDonald M., Chatzikos M., Seebeck J., Mushotzky R. F., Veilleux S., Allen S. W., Bayliss M., Calzadilla M., Canning R., Floyd B., Gaspari M., Hlavacek-Larrondo J., McNamara B., Russell ]., Sharon K., Somboonpanyakul T. Directly imaging the cooling flow in the Phoenix cluster // Nature. 2025. Vol. 638. No. 8050. pp. 360-364.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41586-024-08369-x
UR - https://www.nature.com/articles/s41586-024-08369-x
TI - Directly imaging the cooling flow in the Phoenix cluster
T2 - Nature
AU - Reefe, M.
AU - McDonald, Michael
AU - Chatzikos, Marios
AU - Seebeck, Jerome
AU - Mushotzky, R. F.
AU - Veilleux, Sylvain
AU - Allen, S. W.
AU - Bayliss, Matthew
AU - Calzadilla, Michael
AU - Canning, Rebecca
AU - Floyd, B.
AU - Gaspari, M.
AU - Hlavacek-Larrondo, Julie
AU - McNamara, Brian
AU - Russell, ]helen
AU - Sharon, Keren
AU - Somboonpanyakul, T.
PY - 2025
DA - 2025/02/05
PB - Springer Nature
SP - 360-364
IS - 8050
VL - 638
SN - 0028-0836
SN - 1476-4687
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Reefe,
author = {M. Reefe and Michael McDonald and Marios Chatzikos and Jerome Seebeck and R. F. Mushotzky and Sylvain Veilleux and S. W. Allen and Matthew Bayliss and Michael Calzadilla and Rebecca Canning and B. Floyd and M. Gaspari and Julie Hlavacek-Larrondo and Brian McNamara and ]helen Russell and Keren Sharon and T. Somboonpanyakul},
title = {Directly imaging the cooling flow in the Phoenix cluster},
journal = {Nature},
year = {2025},
volume = {638},
publisher = {Springer Nature},
month = {feb},
url = {https://www.nature.com/articles/s41586-024-08369-x},
number = {8050},
pages = {360--364},
doi = {10.1038/s41586-024-08369-x}
}
MLA
Cite this
MLA Copy
Reefe, M., et al. “Directly imaging the cooling flow in the Phoenix cluster.” Nature, vol. 638, no. 8050, Feb. 2025, pp. 360-364. https://www.nature.com/articles/s41586-024-08369-x.