том 26 издание 6 страницы 886-891

Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network

Sushravya Raghunath 1
Alvaro E Ulloa Cerna 1
Linyuan Jing 1
David P. vanMaanen 1
Joshua Stough 1, 2
Dustin N. Hartzel 3
Joseph Leader 3
H Lester Kirchner 4
Martin C. Stumpe 5
Ashraf Hafez 5
Arun Nemani 5
Tanner Carbonati 5
Kipp W Johnson 5
Katelyn Young 6
Christopher W. Good 7
John M. Pfeifer 8
Aalpen A. Patel 9
Brian P. Delisle 10
Amro Alsaid 7
Dominik Beer 7
Christopher M. Haggerty 1, 7
Brandon K. Fornwalt 1, 7, 9
1
 
Department of Translational Data Science and Informatics, Geisinger, Danville, USA
3
 
Phenomic Analytics and Clinical Data Core, Geisinger, Danville, USA
4
 
Department of Population Health Sciences, Geisinger, Danville, USA
5
 
Tempus Labs, Inc., Chicago, USA
6
 
Department of Internal Medicine, Geisinger, Danville, USA
7
 
Heart Institute, Geisinger, Danville, USA
8
 
Heart and Vascular Center, Evangelical Hospital, Lewisburg, USA
9
 
Department of Radiology, Geisinger, Danville, USA
Тип публикацииJournal Article
Дата публикации2020-05-11
scimago Q1
wos Q1
БС1
SJR18.333
CiteScore82.4
Impact factor50.0
ISSN10788956, 1546170X, 17447933
General Biochemistry, Genetics and Molecular Biology
General Medicine
Краткое описание
The electrocardiogram (ECG) is a widely used medical test, consisting of voltage versus time traces collected from surface recordings over the heart1. Here we hypothesized that a deep neural network (DNN) can predict an important future clinical event, 1-year all-cause mortality, from ECG voltage–time traces. By using ECGs collected over a 34-year period in a large regional health system, we trained a DNN with 1,169,662 12-lead resting ECGs obtained from 253,397 patients, in which 99,371 events occurred. The model achieved an area under the curve (AUC) of 0.88 on a held-out test set of 168,914 patients, in which 14,207 events occurred. Even within the large subset of patients (n = 45,285) with ECGs interpreted as ‘normal’ by a physician, the performance of the model in predicting 1-year mortality remained high (AUC = 0.85). A blinded survey of cardiologists demonstrated that many of the discriminating features of these normal ECGs were not apparent to expert reviewers. Finally, a Cox proportional-hazard model revealed a hazard ratio of 9.5 (P < 0.005) for the two predicted groups (dead versus alive 1 year after ECG) over a 25-year follow-up period. These results show that deep learning can add substantial prognostic information to the interpretation of 12-lead resting ECGs, even in cases that are interpreted as normal by physicians. By using data from electrocardiograms, a deep learning algorithm outperforms traditional risk scores in predicting death over the course of the next year and identifies at-risk individuals with seemingly normal electrocardiograms.
Найдено 
Найдено 

Топ-30

Журналы

2
4
6
8
10
npj Digital Medicine
10 публикаций, 4.03%
Scientific Reports
9 публикаций, 3.63%
European Heart Journal - Digital Health
9 публикаций, 3.63%
Journal of Electrocardiology
5 публикаций, 2.02%
European Heart Journal
5 публикаций, 2.02%
Journal of Personalized Medicine
4 публикации, 1.61%
Frontiers in Cardiovascular Medicine
4 публикации, 1.61%
Canadian Journal of Cardiology
4 публикации, 1.61%
Cardiovascular Digital Health Journal
4 публикации, 1.61%
Computers in Biology and Medicine
4 публикации, 1.61%
JACC Advances
4 публикации, 1.61%
Frontiers in Physiology
3 публикации, 1.21%
Europace
3 публикации, 1.21%
Circulation: Arrhythmia and Electrophysiology
3 публикации, 1.21%
Nature Reviews Cardiology
3 публикации, 1.21%
Circulation: Cardiovascular Quality and Outcomes
3 публикации, 1.21%
The Lancet Digital Health
3 публикации, 1.21%
Circulation: Cardiovascular Imaging
2 публикации, 0.81%
Hearts
2 публикации, 0.81%
Nature Communications
2 публикации, 0.81%
Biomedical Signal Processing and Control
2 публикации, 0.81%
Cell Reports Medicine
2 публикации, 0.81%
Expert Systems with Applications
2 публикации, 0.81%
Computer Methods and Programs in Biomedicine
2 публикации, 0.81%
JACC: Clinical Electrophysiology
2 публикации, 0.81%
IEEE Journal of Translational Engineering in Health and Medicine
2 публикации, 0.81%
Heart
2 публикации, 0.81%
JAMA Cardiology
2 публикации, 0.81%
Communications Medicine
2 публикации, 0.81%
2
4
6
8
10

Издатели

10
20
30
40
50
60
70
Elsevier
62 публикации, 25%
Springer Nature
53 публикации, 21.37%
Oxford University Press
20 публикаций, 8.06%
Cold Spring Harbor Laboratory
20 публикаций, 8.06%
Ovid Technologies (Wolters Kluwer Health)
15 публикаций, 6.05%
Frontiers Media S.A.
12 публикаций, 4.84%
MDPI
11 публикаций, 4.44%
Institute of Electrical and Electronics Engineers (IEEE)
11 публикаций, 4.44%
Wiley
6 публикаций, 2.42%
Taylor & Francis
5 публикаций, 2.02%
BMJ
3 публикации, 1.21%
JMIR Publications
2 публикации, 0.81%
American Medical Association (AMA)
2 публикации, 0.81%
SAGE
2 публикации, 0.81%
The Royal Society
1 публикация, 0.4%
Nippon-Shinzobyo-Gakkai/Japanese College of Cardiology
1 публикация, 0.4%
American Society of Nephrology
1 публикация, 0.4%
Hindawi Limited
1 публикация, 0.4%
Proceedings of the National Academy of Sciences (PNAS)
1 публикация, 0.4%
Public Library of Science (PLoS)
1 публикация, 0.4%
The Japanese Circulation Society
1 публикация, 0.4%
American Institute of Mathematical Sciences (AIMS)
1 публикация, 0.4%
OAE Publishing Inc.
1 публикация, 0.4%
S. Karger AG
1 публикация, 0.4%
Scientific Scholar
1 публикация, 0.4%
Bentham Science Publishers Ltd.
1 публикация, 0.4%
IMR Press
1 публикация, 0.4%
10
20
30
40
50
60
70
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
248
Поделиться
Цитировать
ГОСТ |
Цитировать
Raghunath S. et al. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network // Nature Medicine. 2020. Vol. 26. No. 6. pp. 886-891.
ГОСТ со всеми авторами (до 50) Скопировать
Raghunath S., Ulloa Cerna A. E., Jing L., vanMaanen D. P., Stough J., Hartzel D. N., Leader J., Kirchner H. L., Stumpe M. C., Hafez A., Nemani A., Carbonati T., Johnson K. W., Young K., Good C. W., Pfeifer J. M., Patel A. A., Delisle B. P., Alsaid A., Beer D., Haggerty C. M., Fornwalt B. K. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network // Nature Medicine. 2020. Vol. 26. No. 6. pp. 886-891.
RIS |
Цитировать
TY - JOUR
DO - 10.1038/s41591-020-0870-z
UR - https://doi.org/10.1038/s41591-020-0870-z
TI - Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network
T2 - Nature Medicine
AU - Raghunath, Sushravya
AU - Ulloa Cerna, Alvaro E
AU - Jing, Linyuan
AU - vanMaanen, David P.
AU - Stough, Joshua
AU - Hartzel, Dustin N.
AU - Leader, Joseph
AU - Kirchner, H Lester
AU - Stumpe, Martin C.
AU - Hafez, Ashraf
AU - Nemani, Arun
AU - Carbonati, Tanner
AU - Johnson, Kipp W
AU - Young, Katelyn
AU - Good, Christopher W.
AU - Pfeifer, John M.
AU - Patel, Aalpen A.
AU - Delisle, Brian P.
AU - Alsaid, Amro
AU - Beer, Dominik
AU - Haggerty, Christopher M.
AU - Fornwalt, Brandon K.
PY - 2020
DA - 2020/05/11
PB - Springer Nature
SP - 886-891
IS - 6
VL - 26
PMID - 32393799
SN - 1078-8956
SN - 1546-170X
SN - 1744-7933
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2020_Raghunath,
author = {Sushravya Raghunath and Alvaro E Ulloa Cerna and Linyuan Jing and David P. vanMaanen and Joshua Stough and Dustin N. Hartzel and Joseph Leader and H Lester Kirchner and Martin C. Stumpe and Ashraf Hafez and Arun Nemani and Tanner Carbonati and Kipp W Johnson and Katelyn Young and Christopher W. Good and John M. Pfeifer and Aalpen A. Patel and Brian P. Delisle and Amro Alsaid and Dominik Beer and Christopher M. Haggerty and Brandon K. Fornwalt},
title = {Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network},
journal = {Nature Medicine},
year = {2020},
volume = {26},
publisher = {Springer Nature},
month = {may},
url = {https://doi.org/10.1038/s41591-020-0870-z},
number = {6},
pages = {886--891},
doi = {10.1038/s41591-020-0870-z}
}
MLA
Цитировать
Raghunath, Sushravya, et al. “Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network.” Nature Medicine, vol. 26, no. 6, May. 2020, pp. 886-891. https://doi.org/10.1038/s41591-020-0870-z.