Open Access
Open access
volume 8 issue 1 publication number 167

An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset

Kelly Payette 1, 2
Priscille De Dumast 3, 4
Hamza Kebiri 3, 4
Ivan Ezhov 5
Johannes C. Paetzold 5
Suprosanna Shit 5
Asim Iqbal 2, 6, 7
Romesa Khan 2, 8
Raimund Kottke 9
Patrice Grehten 9
Hui Ji 1
Levente Lanczi 10
Marianna Nagy 10
Mónika Béresová 10
Thi Dao Nguyen 11
Giancarlo Natalucci 11, 12
Theofanis Karayannis 6
Bjoern Menze 5
Meritxell Bach Cuadra 3, 4
András Jakab 1, 2
Publication typeJournal Article
Publication date2021-07-06
scimago Q1
wos Q1
SJR1.867
CiteScore8.4
Impact factor6.9
ISSN20524463
Computer Science Applications
Statistics and Probability
Library and Information Sciences
Information Systems
Statistics, Probability and Uncertainty
Education
Abstract
It is critical to quantitatively analyse the developing human fetal brain in order to fully understand neurodevelopment in both normal fetuses and those with congenital disorders. To facilitate this analysis, automatic multi-tissue fetal brain segmentation algorithms are needed, which in turn requires open datasets of segmented fetal brains. Here we introduce a publicly available dataset of 50 manually segmented pathological and non-pathological fetal magnetic resonance brain volume reconstructions across a range of gestational ages (20 to 33 weeks) into 7 different tissue categories (external cerebrospinal fluid, grey matter, white matter, ventricles, cerebellum, deep grey matter, brainstem/spinal cord). In addition, we quantitatively evaluate the accuracy of several automatic multi-tissue segmentation algorithms of the developing human fetal brain. Four research groups participated, submitting a total of 10 algorithms, demonstrating the benefits the dataset for the development of automatic algorithms. Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14039327
Found 
Found 

Top-30

Journals

5
10
15
20
25
Lecture Notes in Computer Science
21 publications, 19.09%
Medical Image Analysis
6 publications, 5.45%
Scientific Reports
4 publications, 3.64%
bioRxiv
4 publications, 3.64%
Scientific data
3 publications, 2.73%
NeuroImage
3 publications, 2.73%
IEEE Transactions on Medical Imaging
3 publications, 2.73%
Frontiers in Neuroscience
2 publications, 1.82%
Neuroinformatics
2 publications, 1.82%
Computer Methods and Programs in Biomedicine
2 publications, 1.82%
Lecture Notes in Networks and Systems
2 publications, 1.82%
IEEE Transactions on Neural Networks and Learning Systems
2 publications, 1.82%
British Journal of Radiology
1 publication, 0.91%
Open Research Europe
1 publication, 0.91%
Sensors
1 publication, 0.91%
Die Radiologie
1 publication, 0.91%
Network Modeling and Analysis in Health Informatics and Bioinformatics
1 publication, 0.91%
Journal of Cardiovascular Magnetic Resonance
1 publication, 0.91%
Developmental Cognitive Neuroscience
1 publication, 0.91%
Health Information Science and Systems
1 publication, 0.91%
American Journal of Neuroradiology
1 publication, 0.91%
World Journal of Clinical Cases
1 publication, 0.91%
Artificial Intelligence in Medicine
1 publication, 0.91%
Bioengineering
1 publication, 0.91%
Neurocomputing
1 publication, 0.91%
IEEE Access
1 publication, 0.91%
BMC Medical Imaging
1 publication, 0.91%
IEEE Transactions on Pattern Analysis and Machine Intelligence
1 publication, 0.91%
Medical Physics
1 publication, 0.91%
5
10
15
20
25

Publishers

5
10
15
20
25
30
35
40
Springer Nature
39 publications, 35.45%
Institute of Electrical and Electronics Engineers (IEEE)
20 publications, 18.18%
Elsevier
18 publications, 16.36%
Cold Spring Harbor Laboratory
13 publications, 11.82%
MDPI
5 publications, 4.55%
Wiley
4 publications, 3.64%
Frontiers Media S.A.
3 publications, 2.73%
British Institute of Radiology
1 publication, 0.91%
F1000 Research
1 publication, 0.91%
American Society of Neuroradiology (ASNR)
1 publication, 0.91%
Baishideng Publishing Group
1 publication, 0.91%
BMJ
1 publication, 0.91%
SPIE-Intl Soc Optical Eng
1 publication, 0.91%
5
10
15
20
25
30
35
40
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
110
Share
Cite this
GOST |
Cite this
GOST Copy
Payette K. et al. An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset // Scientific data. 2021. Vol. 8. No. 1. 167
GOST all authors (up to 50) Copy
Payette K., De Dumast P., Kebiri H., Ezhov I., Paetzold J. C., Shit S., Iqbal A., Khan R., Kottke R., Grehten P., Ji H., Lanczi L., Nagy M., Béresová M., Nguyen T. D., Natalucci G., Karayannis T., Menze B., Bach Cuadra M., Jakab A. An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset // Scientific data. 2021. Vol. 8. No. 1. 167
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41597-021-00946-3
UR - https://doi.org/10.1038/s41597-021-00946-3
TI - An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset
T2 - Scientific data
AU - Payette, Kelly
AU - De Dumast, Priscille
AU - Kebiri, Hamza
AU - Ezhov, Ivan
AU - Paetzold, Johannes C.
AU - Shit, Suprosanna
AU - Iqbal, Asim
AU - Khan, Romesa
AU - Kottke, Raimund
AU - Grehten, Patrice
AU - Ji, Hui
AU - Lanczi, Levente
AU - Nagy, Marianna
AU - Béresová, Mónika
AU - Nguyen, Thi Dao
AU - Natalucci, Giancarlo
AU - Karayannis, Theofanis
AU - Menze, Bjoern
AU - Bach Cuadra, Meritxell
AU - Jakab, András
PY - 2021
DA - 2021/07/06
PB - Springer Nature
IS - 1
VL - 8
PMID - 34230489
SN - 2052-4463
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2021_Payette,
author = {Kelly Payette and Priscille De Dumast and Hamza Kebiri and Ivan Ezhov and Johannes C. Paetzold and Suprosanna Shit and Asim Iqbal and Romesa Khan and Raimund Kottke and Patrice Grehten and Hui Ji and Levente Lanczi and Marianna Nagy and Mónika Béresová and Thi Dao Nguyen and Giancarlo Natalucci and Theofanis Karayannis and Bjoern Menze and Meritxell Bach Cuadra and András Jakab},
title = {An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset},
journal = {Scientific data},
year = {2021},
volume = {8},
publisher = {Springer Nature},
month = {jul},
url = {https://doi.org/10.1038/s41597-021-00946-3},
number = {1},
pages = {167},
doi = {10.1038/s41597-021-00946-3}
}