Open Access
Open access
том 12 издание 1 номер публикации 4954

Estimating the density of deep eutectic solvents applying supervised machine learning techniques

Mohammadjavad Abdollahzadeh 1
Marzieh Khosravi 2
Behnam Hajipour Khire Masjidi 3
Amin Samimi Behbahan 4
Ali Bagherzadeh 5
Amir Shahkar 6
Farzad Tat Shahdost 7
Тип публикацииJournal Article
Дата публикации2022-03-23
scimago Q1
wos Q1
БС1
SJR0.874
CiteScore6.7
Impact factor3.9
ISSN20452322
Multidisciplinary
Краткое описание
Deep eutectic solvents (DES) are recently synthesized to cover limitations of conventional solvents. These green solvents have wide ranges of potential usages in real-life applications. Precise measuring or accurate estimating thermophysical properties of DESs is a prerequisite for their successful applications. Density is likely the most crucial affecting characteristic on the solvation ability of DESs. This study utilizes seven machine learning techniques to estimate the density of 149 deep eutectic solvents. The density is anticipated as a function of temperature, critical pressure and temperature, and acentric factor. The LSSVR (least-squares support vector regression) presents the highest accuracy among 1530 constructed intelligent estimators. The LSSVR predicts 1239 densities with the mean absolute percentage error (MAPE) of 0.26% and R2 = 0.99798. Comparing the LSSVR and four empirical correlations revealed that the earlier possesses the highest accuracy level. The prediction accuracy of the LSSVR (i.e., MAPE = 0. 26%) is 74.5% better than the best-obtained results by the empirical correlations (i.e., MAPE = 1.02%).
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
6
7
8
Journal of Molecular Liquids
8 публикаций, 11.11%
Scientific Reports
5 публикаций, 6.94%
Separation and Purification Technology
3 публикации, 4.17%
Asian Journal of Civil Engineering
2 публикации, 2.78%
ACS Sustainable Chemistry and Engineering
2 публикации, 2.78%
Industrial & Engineering Chemistry Research
2 публикации, 2.78%
ACS Omega
2 публикации, 2.78%
Analytics
1 публикация, 1.39%
Journal of Computational Biophysics and Chemistry
1 публикация, 1.39%
Frontiers in Energy Research
1 публикация, 1.39%
Energies
1 публикация, 1.39%
Hydrology
1 публикация, 1.39%
Journal of Energy Chemistry
1 публикация, 1.39%
Measurement: Journal of the International Measurement Confederation
1 публикация, 1.39%
International Journal of Thermofluids
1 публикация, 1.39%
Fluid Phase Equilibria
1 публикация, 1.39%
Green Chemical Engineering
1 публикация, 1.39%
Journal of Marine Science and Engineering
1 публикация, 1.39%
Journal of Cleaner Production
1 публикация, 1.39%
Applied Physics Letters
1 публикация, 1.39%
Eng—Advances in Engineering
1 публикация, 1.39%
Chemistry of Materials
1 публикация, 1.39%
International Journal of Advanced Manufacturing Technology
1 публикация, 1.39%
Petroleum Science and Technology
1 публикация, 1.39%
Journal of Chemical & Engineering Data
1 публикация, 1.39%
ACS Symposium Series
1 публикация, 1.39%
Communications Chemistry
1 публикация, 1.39%
Green Chemistry
1 публикация, 1.39%
Chemical Engineering and Processing: Process Intensification
1 публикация, 1.39%
1
2
3
4
5
6
7
8

Издатели

5
10
15
20
25
30
Elsevier
28 публикаций, 38.89%
Springer Nature
16 публикаций, 22.22%
American Chemical Society (ACS)
10 публикаций, 13.89%
MDPI
7 публикаций, 9.72%
Wiley
2 публикации, 2.78%
World Scientific
1 публикация, 1.39%
Frontiers Media S.A.
1 публикация, 1.39%
AIP Publishing
1 публикация, 1.39%
Taylor & Francis
1 публикация, 1.39%
Royal Society of Chemistry (RSC)
1 публикация, 1.39%
Universitas Gadjah Mada
1 публикация, 1.39%
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 1.39%
5
10
15
20
25
30
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
72
Поделиться
Цитировать
ГОСТ |
Цитировать
Abdollahzadeh M. et al. Estimating the density of deep eutectic solvents applying supervised machine learning techniques // Scientific Reports. 2022. Vol. 12. No. 1. 4954
ГОСТ со всеми авторами (до 50) Скопировать
Abdollahzadeh M., Khosravi M., Hajipour Khire Masjidi B., Samimi Behbahan A., Bagherzadeh A., Shahkar A., Tat Shahdost F. Estimating the density of deep eutectic solvents applying supervised machine learning techniques // Scientific Reports. 2022. Vol. 12. No. 1. 4954
RIS |
Цитировать
TY - JOUR
DO - 10.1038/s41598-022-08842-5
UR - https://doi.org/10.1038/s41598-022-08842-5
TI - Estimating the density of deep eutectic solvents applying supervised machine learning techniques
T2 - Scientific Reports
AU - Abdollahzadeh, Mohammadjavad
AU - Khosravi, Marzieh
AU - Hajipour Khire Masjidi, Behnam
AU - Samimi Behbahan, Amin
AU - Bagherzadeh, Ali
AU - Shahkar, Amir
AU - Tat Shahdost, Farzad
PY - 2022
DA - 2022/03/23
PB - Springer Nature
IS - 1
VL - 12
PMID - 35322084
SN - 2045-2322
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2022_Abdollahzadeh,
author = {Mohammadjavad Abdollahzadeh and Marzieh Khosravi and Behnam Hajipour Khire Masjidi and Amin Samimi Behbahan and Ali Bagherzadeh and Amir Shahkar and Farzad Tat Shahdost},
title = {Estimating the density of deep eutectic solvents applying supervised machine learning techniques},
journal = {Scientific Reports},
year = {2022},
volume = {12},
publisher = {Springer Nature},
month = {mar},
url = {https://doi.org/10.1038/s41598-022-08842-5},
number = {1},
pages = {4954},
doi = {10.1038/s41598-022-08842-5}
}