Open Access
Open access
том 13 издание 1 номер публикации 8925

File-level malware detection using byte streams

Young Seob Jeong 1
Medard Edmund Mswahili 1
Ah-Reum Kang 2
Тип публикацииJournal Article
Дата публикации2023-06-01
scimago Q1
wos Q1
БС1
SJR0.874
CiteScore6.7
Impact factor3.9
ISSN20452322
Multidisciplinary
Краткое описание

As more documents appear on the Internet, it becomes important to detect malware within the documents. Malware of non-executables might be more dangerous because people usually open them without worrying about inherent danger. Recently, deep learning models are used to analyze byte streams of the non-executables for malware detection. Although they have shown successful results, they are commonly designed for stream-level detection, but not for file-level detection. In this paper, we propose a new method that aggregates the stream-level results to get file-level results for malware detection. We demonstrate its effectiveness by experimental results with our annotated dataset, and show that it gives performance gain of 3.37–5.89% of F1 scores.

Найдено 
Найдено 

Топ-30

Журналы

1
2
Applied Sciences (Switzerland)
2 публикации, 40%
Computers and Security
1 публикация, 20%
Journal of Computer Virology and Hacking Techniques
1 публикация, 20%
PLoS ONE
1 публикация, 20%
1
2

Издатели

1
2
MDPI
2 публикации, 40%
Elsevier
1 публикация, 20%
Springer Nature
1 публикация, 20%
Public Library of Science (PLoS)
1 публикация, 20%
1
2
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
5
Поделиться
Цитировать
ГОСТ |
Цитировать
Jeong Y. S., Mswahili M. E., Kang A. File-level malware detection using byte streams // Scientific Reports. 2023. Vol. 13. No. 1. 8925
ГОСТ со всеми авторами (до 50) Скопировать
Jeong Y. S., Mswahili M. E., Kang A. File-level malware detection using byte streams // Scientific Reports. 2023. Vol. 13. No. 1. 8925
RIS |
Цитировать
TY - JOUR
DO - 10.1038/s41598-023-36088-2
UR - https://doi.org/10.1038/s41598-023-36088-2
TI - File-level malware detection using byte streams
T2 - Scientific Reports
AU - Jeong, Young Seob
AU - Mswahili, Medard Edmund
AU - Kang, Ah-Reum
PY - 2023
DA - 2023/06/01
PB - Springer Nature
IS - 1
VL - 13
PMID - 37264210
SN - 2045-2322
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2023_Jeong,
author = {Young Seob Jeong and Medard Edmund Mswahili and Ah-Reum Kang},
title = {File-level malware detection using byte streams},
journal = {Scientific Reports},
year = {2023},
volume = {13},
publisher = {Springer Nature},
month = {jun},
url = {https://doi.org/10.1038/s41598-023-36088-2},
number = {1},
pages = {8925},
doi = {10.1038/s41598-023-36088-2}
}