Open Access
Open access
volume 3 issue 1 publication number 119

The future of digital health with federated learning

Nicola Rieke 1, 2
Jonny Hancox 3
Wenqi Li 4
Fausto Milletari 1
Holger Roth 5
Shadi Albarqouni 2, 6
Spyridon Bakas 7
Mathieu N. Galtier 8
Klaus Maier-Hein 10, 11
Sebastien Ourselin 12
Micah Sheller 13
Andrew Trask 15, 16, 17
Daguang Xu 5
Maximilian Baust 1
M Isabel Cardoso 12
Publication typeJournal Article
Publication date2020-09-14
scimago Q1
wos Q1
SJR4.164
CiteScore20.3
Impact factor15.1
ISSN23986352
Medicine (miscellaneous)
Computer Science Applications
Health Informatics
Health Information Management
Abstract
Data-driven machine learning (ML) has emerged as a promising approach for building accurate and robust statistical models from medical data, which is collected in huge volumes by modern healthcare systems. Existing medical data is not fully exploited by ML primarily because it sits in data silos and privacy concerns restrict access to this data. However, without access to sufficient data, ML will be prevented from reaching its full potential and, ultimately, from making the transition from research to clinical practice. This paper considers key factors contributing to this issue, explores how federated learning (FL) may provide a solution for the future of digital health and highlights the challenges and considerations that need to be addressed.
Found 
Found 

Top-30

Journals

10
20
30
40
50
60
70
80
Lecture Notes in Computer Science
72 publications, 3.95%
IEEE Access
43 publications, 2.36%
npj Digital Medicine
24 publications, 1.32%
Scientific Reports
23 publications, 1.26%
IEEE Internet of Things Journal
22 publications, 1.21%
Lecture Notes in Networks and Systems
21 publications, 1.15%
IEEE Transactions on Medical Imaging
18 publications, 0.99%
Journal of Medical Internet Research
16 publications, 0.88%
Sensors
16 publications, 0.88%
Computers in Biology and Medicine
16 publications, 0.88%
Medical Image Analysis
16 publications, 0.88%
Electronics (Switzerland)
15 publications, 0.82%
Communications in Computer and Information Science
15 publications, 0.82%
Applied Sciences (Switzerland)
14 publications, 0.77%
Diagnostics
11 publications, 0.6%
Nature Machine Intelligence
10 publications, 0.55%
Procedia Computer Science
10 publications, 0.55%
Future Generation Computer Systems
10 publications, 0.55%
Patterns
10 publications, 0.55%
IEEE Journal of Biomedical and Health Informatics
10 publications, 0.55%
Advances in Healthcare Information Systems and Administration
10 publications, 0.55%
Information Fusion
9 publications, 0.49%
Computer Methods and Programs in Biomedicine
9 publications, 0.49%
PLoS ONE
9 publications, 0.49%
Studies in Computational Intelligence
9 publications, 0.49%
Expert Systems with Applications
9 publications, 0.49%
ACM Transactions on Intelligent Systems and Technology
8 publications, 0.44%
ACM Computing Surveys
8 publications, 0.44%
Artificial Intelligence Review
8 publications, 0.44%
10
20
30
40
50
60
70
80

Publishers

50
100
150
200
250
300
350
400
450
Springer Nature
441 publications, 24.18%
Institute of Electrical and Electronics Engineers (IEEE)
422 publications, 23.14%
Elsevier
335 publications, 18.37%
MDPI
139 publications, 7.62%
Wiley
63 publications, 3.45%
Frontiers Media S.A.
48 publications, 2.63%
Association for Computing Machinery (ACM)
44 publications, 2.41%
JMIR Publications
41 publications, 2.25%
Oxford University Press
27 publications, 1.48%
Cold Spring Harbor Laboratory
24 publications, 1.32%
Taylor & Francis
20 publications, 1.1%
Ovid Technologies (Wolters Kluwer Health)
19 publications, 1.04%
IGI Global
19 publications, 1.04%
Public Library of Science (PLoS)
17 publications, 0.93%
SAGE
15 publications, 0.82%
IOP Publishing
9 publications, 0.49%
BMJ
6 publications, 0.33%
Cambridge University Press
6 publications, 0.33%
Radiological Society of North America (RSNA)
5 publications, 0.27%
Georg Thieme Verlag KG
5 publications, 0.27%
IntechOpen
5 publications, 0.27%
Hindawi Limited
4 publications, 0.22%
Annual Reviews
4 publications, 0.22%
SPIE-Intl Soc Optical Eng
4 publications, 0.22%
Tsinghua University Press
4 publications, 0.22%
British Institute of Radiology
3 publications, 0.16%
Baishideng Publishing Group
3 publications, 0.16%
King Saud University
3 publications, 0.16%
AIP Publishing
3 publications, 0.16%
50
100
150
200
250
300
350
400
450
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
1.8k
Share
Cite this
GOST |
Cite this
GOST Copy
Rieke N. et al. The future of digital health with federated learning // npj Digital Medicine. 2020. Vol. 3. No. 1. 119
GOST all authors (up to 50) Copy
Rieke N., Hancox J., Li W., Milletari F., Roth H., Albarqouni S., Bakas S., Galtier M. N., Landman B. A., Maier-Hein K., Ourselin S., Sheller M., Summers R. M., Trask A., Xu D., Baust M., Cardoso M. I. The future of digital health with federated learning // npj Digital Medicine. 2020. Vol. 3. No. 1. 119
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41746-020-00323-1
UR - https://doi.org/10.1038/s41746-020-00323-1
TI - The future of digital health with federated learning
T2 - npj Digital Medicine
AU - Rieke, Nicola
AU - Hancox, Jonny
AU - Li, Wenqi
AU - Milletari, Fausto
AU - Roth, Holger
AU - Albarqouni, Shadi
AU - Bakas, Spyridon
AU - Galtier, Mathieu N.
AU - Landman, Bennett A.
AU - Maier-Hein, Klaus
AU - Ourselin, Sebastien
AU - Sheller, Micah
AU - Summers, Ronald M.
AU - Trask, Andrew
AU - Xu, Daguang
AU - Baust, Maximilian
AU - Cardoso, M Isabel
PY - 2020
DA - 2020/09/14
PB - Springer Nature
IS - 1
VL - 3
PMID - 33015372
SN - 2398-6352
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2020_Rieke,
author = {Nicola Rieke and Jonny Hancox and Wenqi Li and Fausto Milletari and Holger Roth and Shadi Albarqouni and Spyridon Bakas and Mathieu N. Galtier and Bennett A. Landman and Klaus Maier-Hein and Sebastien Ourselin and Micah Sheller and Ronald M. Summers and Andrew Trask and Daguang Xu and Maximilian Baust and M Isabel Cardoso},
title = {The future of digital health with federated learning},
journal = {npj Digital Medicine},
year = {2020},
volume = {3},
publisher = {Springer Nature},
month = {sep},
url = {https://doi.org/10.1038/s41746-020-00323-1},
number = {1},
pages = {119},
doi = {10.1038/s41746-020-00323-1}
}