volume 3 issue 12 pages 738-743

Single artificial atoms in silicon emitting at telecom wavelengths

W. Redjem 1
A. Durand 1
A. BENALI 3
S. Pezzagna 2
J. Meijer 2
A. Yu. Kuznetsov 4
H.-S. Nguyen 5
I Robert Philip 1
B. GIL 1
D. Caliste 6
P. Pochet 6
V. Jacques 1
A. Dréau 1
G. Cassabois 1
Publication typeJournal Article
Publication date2020-11-23
scimago Q1
wos Q1
SJR11.082
CiteScore49.1
Impact factor40.9
ISSN25201131
Electronic, Optical and Magnetic Materials
Electrical and Electronic Engineering
Instrumentation
Abstract
Given its potential for integration and scalability, silicon is likely to be a key platform for large-scale quantum technologies. Individual electron-encoded artificial atoms, formed by either impurities or quantum dots, have emerged as a promising solution for silicon-based integrated quantum circuits. However, single qubits featuring an optical interface, which is needed for long-distance exchange of information, have not yet been isolated in silicon. Here we report the isolation of single optically active point defects in a commercial silicon-on-insulator wafer implanted with carbon atoms. These artificial atoms exhibit a bright, linearly polarized single-photon emission with a quantum efficiency of the order of unity. This single-photon emission occurs at telecom wavelengths suitable for long-distance propagation in optical fibres. Our results show that silicon can accommodate single isolated optical point defects like in wide-bandgap semiconductors, despite a small bandgap (1.1 eV) that is unfavourable for such observations. Carbon-related point defects can be isolated in a commercial silicon-on-insulator wafer, acting as artificial atoms that provide efficient polarized single-photon emission at wavelengths suitable for long-distance propagation in optical fibres.
Found 
Found 

Top-30

Journals

2
4
6
8
10
12
Nature Communications
12 publications, 9.23%
ACS Photonics
10 publications, 7.69%
Advanced Quantum Technologies
7 publications, 5.38%
Physical Review Applied
6 publications, 4.62%
Nanophotonics
5 publications, 3.85%
Journal of Applied Physics
5 publications, 3.85%
Applied Physics Letters
4 publications, 3.08%
Nano Letters
4 publications, 3.08%
APL Photonics
3 publications, 2.31%
npj Computational Materials
3 publications, 2.31%
Materials for Quantum Technology
3 publications, 2.31%
Optica
3 publications, 2.31%
Physical Review X
3 publications, 2.31%
Physical Review Letters
2 publications, 1.54%
Communications Materials
2 publications, 1.54%
Advanced Optical Materials
2 publications, 1.54%
PRX Quantum
2 publications, 1.54%
Physical Review B
2 publications, 1.54%
ACS Nano
2 publications, 1.54%
Physical Review Materials
1 publication, 0.77%
Journal of Chemical Physics
1 publication, 0.77%
Micromachines
1 publication, 0.77%
Quantum Beam Science
1 publication, 0.77%
Frontiers in Neuroscience
1 publication, 0.77%
Nature
1 publication, 0.77%
Scientific Reports
1 publication, 0.77%
Nature Electronics
1 publication, 0.77%
Optical Materials: X
1 publication, 0.77%
Journal of Crystal Growth
1 publication, 0.77%
2
4
6
8
10
12

Publishers

5
10
15
20
25
30
Springer Nature
27 publications, 20.77%
American Physical Society (APS)
17 publications, 13.08%
American Chemical Society (ACS)
17 publications, 13.08%
AIP Publishing
15 publications, 11.54%
Wiley
15 publications, 11.54%
Optica Publishing Group
7 publications, 5.38%
IOP Publishing
6 publications, 4.62%
Walter de Gruyter
5 publications, 3.85%
Elsevier
5 publications, 3.85%
MDPI
3 publications, 2.31%
Institute of Electrical and Electronics Engineers (IEEE)
3 publications, 2.31%
SPIE-Intl Soc Optical Eng
3 publications, 2.31%
Frontiers Media S.A.
1 publication, 0.77%
American Association for the Advancement of Science (AAAS)
1 publication, 0.77%
Oxford University Press
1 publication, 0.77%
Royal Society of Chemistry (RSC)
1 publication, 0.77%
5
10
15
20
25
30
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
130
Share
Cite this
GOST |
Cite this
GOST Copy
Redjem W. et al. Single artificial atoms in silicon emitting at telecom wavelengths // Nature Electronics. 2020. Vol. 3. No. 12. pp. 738-743.
GOST all authors (up to 50) Copy
Redjem W., Durand A., Herzig T., BENALI A., Pezzagna S., Meijer J., Kuznetsov A. Y., Nguyen H., Cueff S., Gérard J. L., Robert Philip I., GIL B., Caliste D., Pochet P., Abbarchi M., Jacques V., Dréau A., Cassabois G. Single artificial atoms in silicon emitting at telecom wavelengths // Nature Electronics. 2020. Vol. 3. No. 12. pp. 738-743.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41928-020-00499-0
UR - https://doi.org/10.1038/s41928-020-00499-0
TI - Single artificial atoms in silicon emitting at telecom wavelengths
T2 - Nature Electronics
AU - Redjem, W.
AU - Durand, A.
AU - Herzig, Tobias
AU - BENALI, A.
AU - Pezzagna, S.
AU - Meijer, J.
AU - Kuznetsov, A. Yu.
AU - Nguyen, H.-S.
AU - Cueff, Sébastien
AU - Gérard, J. L.
AU - Robert Philip, I
AU - GIL, B.
AU - Caliste, D.
AU - Pochet, P.
AU - Abbarchi, Marco
AU - Jacques, V.
AU - Dréau, A.
AU - Cassabois, G.
PY - 2020
DA - 2020/11/23
PB - Springer Nature
SP - 738-743
IS - 12
VL - 3
SN - 2520-1131
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2020_Redjem,
author = {W. Redjem and A. Durand and Tobias Herzig and A. BENALI and S. Pezzagna and J. Meijer and A. Yu. Kuznetsov and H.-S. Nguyen and Sébastien Cueff and J. L. Gérard and I Robert Philip and B. GIL and D. Caliste and P. Pochet and Marco Abbarchi and V. Jacques and A. Dréau and G. Cassabois},
title = {Single artificial atoms in silicon emitting at telecom wavelengths},
journal = {Nature Electronics},
year = {2020},
volume = {3},
publisher = {Springer Nature},
month = {nov},
url = {https://doi.org/10.1038/s41928-020-00499-0},
number = {12},
pages = {738--743},
doi = {10.1038/s41928-020-00499-0}
}
MLA
Cite this
MLA Copy
Redjem, W., et al. “Single artificial atoms in silicon emitting at telecom wavelengths.” Nature Electronics, vol. 3, no. 12, Nov. 2020, pp. 738-743. https://doi.org/10.1038/s41928-020-00499-0.