Nature Metabolism, volume 2, issue 3, pages 278-289
Meteorin-like facilitates skeletal muscle repair through a Stat3/IGF-1 mechanism
Gurpreet S. Baht
1, 2
,
Akshay Bareja
1, 3
,
David E. Lee
1, 3
,
Rajesh R. Rao
4
,
Rong Huang
1, 2
,
Janet L. Huebner
1
,
David B. Bartlett
1, 5, 6
,
Corey R. Hart
7
,
Jason R. Gibson
1
,
Ian R. Lanza
7
,
Virginia B. Kraus
1, 3, 5
,
Simon G Gregory
1, 8
,
Bruce M. Spiegelman
9
,
James P White
1, 3, 5
4
Genomics Institute of the Novartis Research Foundation, San Diego, USA
|
Publication type: Journal Article
Publication date: 2020-03-01
Cell Biology
Endocrinology, Diabetes and Metabolism
Physiology (medical)
Internal Medicine
Abstract
The immune system plays a multifunctional role throughout the regenerative process, regulating both pro-/anti-inflammatory phases and progenitor cell function. In the present study, we identify the myokine/cytokine Meteorin-like (Metrnl) as a critical regulator of muscle regeneration. Mice genetically lacking Metrnl have impaired muscle regeneration associated with a reduction in immune cell infiltration and an inability to transition towards an anti-inflammatory phenotype. Isochronic parabiosis, joining wild-type and whole-body Metrnl knock-out (KO) mice, returns Metrnl expression in the injured muscle and improves muscle repair, providing supportive evidence for Metrnl secretion from infiltrating immune cells. Macrophage-specific Metrnl KO mice are also deficient in muscle repair. During muscle regeneration, Metrnl works, in part, through Stat3 activation in macrophages, resulting in differentiation to an anti-inflammatory phenotype. With regard to myogenesis, Metrnl induces macrophage-dependent insulin-like growth factor 1 production, which has a direct effect on primary muscle satellite cell proliferation. Perturbations in this pathway inhibit efficacy of Metrnl in the regenerative process. Together, these studies identify Metrnl as an important regulator of muscle regeneration and a potential therapeutic target to enhance tissue repair. The immune system is known to play an important role in regenerative processes. Here, Baht and colleagues identify Metrnl, a myokine/cytokine expressed in macrophages, as mediator of muscle regeneration. Metrnl promotes macrophage IGF-1 production that, in turn, activates satellite cells.
Found
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.