Open Access
Scientific Reports, volume 4, issue 1, publication number 5711
Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation
Wenjing Wang
1
,
Yuan Daqiang
1
Publication type: Journal Article
Publication date: 2014-07-16
PubMed ID:
25026895
Multidisciplinary
Abstract
Four nanoporous carbons prepared by direct carbonization of non-permanent highly porous MOF [Zn3(BTC)2·(H2O)3]n without any additional carbon precursors. The carbonization temperature plays an important role in the pore structures of the resultant carbons. The Brunauer-Emmett-Teller (BET) surface areas of four carbon materials vary from 464 to 1671 m2 g−1 for different carbonization temperature. All the four carbon materials showed a mesoporous structure centered at ca. 3 nm, high surface area and good physicochemical stability. Hydrogen, methane and carbon dioxide sorption measurements indicated that the C1000 has good gas uptake capabilities. The excess H2 uptake at 77 K and 17.9 bar can reach 32.9 mg g−1 and the total uptake is high to 45 mg g−1. Meanwhile, at 95 bar, the total CH4 uptake can reach as high as 208 mg g−1. Moreover the ideal adsorbed solution theory (IAST) prediction exhibited exceptionally high adsorption selectivity for CO2/CH4 in an equimolar mixture at 298 K and 1 bar (Sads = 27) which is significantly higher than that of some porous materials in the similar condition.
Found
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.