том 447 издание 7143 страницы 441-446

Single-exciton optical gain in semiconductor nanocrystals

Тип публикацииJournal Article
Дата публикации2007-05-24
scimago Q1
wos Q1
БС1
SJR18.288
CiteScore78.1
Impact factor48.5
ISSN00280836, 14764687
Multidisciplinary
Краткое описание
Nanocrystal quantum dots have favourable light-emitting properties. They show photoluminescence with high quantum yields, and their emission colours depend on the nanocrystal size—owing to the quantum-confinement effect—and are therefore tunable. However, nanocrystals are difficult to use in optical amplification and lasing. Because of an almost exact balance between absorption and stimulated emission in nanoparticles excited with single electron–hole pairs (excitons), optical gain can only occur in nanocrystals that contain at least two excitons. A complication associated with this multiexcitonic nature of light amplification is fast optical-gain decay induced by non-radiative Auger recombination, a process in which one exciton recombines by transferring its energy to another. Here we demonstrate a practical approach for obtaining optical gain in the single-exciton regime that eliminates the problem of Auger decay. Specifically, we develop core/shell hetero-nanocrystals engineered in such a way as to spatially separate electrons and holes between the core and the shell (type-II heterostructures). The resulting imbalance between negative and positive charges produces a strong local electric field, which induces a giant (∼100 meV or greater) transient Stark shift of the absorption spectrum with respect to the luminescence line of singly excited nanocrystals. This effect breaks the exact balance between absorption and stimulated emission, and allows us to demonstrate optical amplification due to single excitons. Semiconductor nanocrystals have very good light-emitting properties, so have potential as optical amplification media that can be easily processed with solution-based techniques: possible applications include optical interconnects in microelectronics, lab-on-a-chip technologies and quantum information processing. The problem with these structures is that at least two excitons (bound electron–hole pairs) need to be present in a nanocrystal before optical gain can be achieved, and this limits performance. In effect, the excitons annihilate each other before optical amplification can occur. This obstacle has now been overcome using nanocrystals with cores and shells made from different semiconductor materials, constructed in such a way that electrons and holes are separated from each other. This makes optical gain based on single excitons possible, significantly enhancing their promise as a practical optical material for laser applications. Semiconductor nanocrystals seem good candidates for 'soft' optical gain media, but optical gain and lasing is hard to achieve owing to a fundamental optical effect, which involves the problem that at least two excitons need to be present in a nanocrystal to achieve gain, and this limits performance. Here the problem is circumvented by designing nanocrystals with cores and shells made from different semiconductor materials, and in such a way that electrons and holes are separated from each other: this makes possible optical gain based on single excitons, thereby significantly enhancing the promise of semiconductor nanocrystals as practical optical materials for a wide range of lasing applications.
Найдено 
Найдено 

Топ-30

Журналы

10
20
30
40
50
60
70
Journal of Physical Chemistry C
68 публикаций, 7.49%
Nano Letters
64 публикации, 7.05%
ACS Nano
45 публикаций, 4.96%
Physical Review B
33 публикации, 3.63%
Journal of Physical Chemistry Letters
29 публикаций, 3.19%
Journal of the American Chemical Society
25 публикаций, 2.75%
Advanced Materials
24 публикации, 2.64%
Nanoscale
24 публикации, 2.64%
Nature Communications
20 публикаций, 2.2%
Applied Physics Letters
18 публикаций, 1.98%
ACS Photonics
17 публикаций, 1.87%
Small
14 публикаций, 1.54%
Physical Chemistry Chemical Physics
13 публикаций, 1.43%
Journal of Chemical Physics
11 публикаций, 1.21%
Chemistry of Materials
11 публикаций, 1.21%
Journal of Materials Chemistry C
10 публикаций, 1.1%
Journal of Applied Physics
9 публикаций, 0.99%
Nanotechnology
9 публикаций, 0.99%
Optics Express
9 публикаций, 0.99%
Advanced Functional Materials
8 публикаций, 0.88%
Chemical Reviews
8 публикаций, 0.88%
Physical Review Letters
7 публикаций, 0.77%
Optical Materials
7 публикаций, 0.77%
Chemical Society Reviews
7 публикаций, 0.77%
Materials Letters
6 публикаций, 0.66%
Advanced Optical Materials
6 публикаций, 0.66%
RSC Advances
6 публикаций, 0.66%
Journal of the Physical Society of Japan
5 публикаций, 0.55%
Nanomaterials
5 публикаций, 0.55%
10
20
30
40
50
60
70

Издатели

50
100
150
200
250
300
American Chemical Society (ACS)
293 публикации, 32.27%
Elsevier
98 публикаций, 10.79%
Wiley
89 публикаций, 9.8%
Springer Nature
88 публикаций, 9.69%
Royal Society of Chemistry (RSC)
81 публикация, 8.92%
AIP Publishing
41 публикация, 4.52%
American Physical Society (APS)
41 публикация, 4.52%
IOP Publishing
31 публикация, 3.41%
Institute of Electrical and Electronics Engineers (IEEE)
17 публикаций, 1.87%
Optica Publishing Group
16 публикаций, 1.76%
MDPI
10 публикаций, 1.1%
Pleiades Publishing
7 публикаций, 0.77%
Taylor & Francis
7 публикаций, 0.77%
American Association for the Advancement of Science (AAAS)
7 публикаций, 0.77%
SPIE-Intl Soc Optical Eng
6 публикаций, 0.66%
Physical Society of Japan
5 публикаций, 0.55%
Cambridge University Press
5 публикаций, 0.55%
EDP Sciences
3 публикации, 0.33%
Walter de Gruyter
3 публикации, 0.33%
Hindawi Limited
3 публикации, 0.33%
Uspekhi Fizicheskikh Nauk Journal
2 публикации, 0.22%
World Scientific
2 публикации, 0.22%
Cellule MathDoc/Centre Mersenne
2 публикации, 0.22%
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
2 публикации, 0.22%
Trans Tech Publications
2 публикации, 0.22%
Cold Spring Harbor Laboratory
2 публикации, 0.22%
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 публикация, 0.11%
Bentham Science Publishers Ltd.
1 публикация, 0.11%
Oxford University Press
1 публикация, 0.11%
50
100
150
200
250
300
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
908
Поделиться
Цитировать
ГОСТ |
Цитировать
Klimov V. I. et al. Single-exciton optical gain in semiconductor nanocrystals // Nature. 2007. Vol. 447. No. 7143. pp. 441-446.
ГОСТ со всеми авторами (до 50) Скопировать
Klimov V. I., Ivanov S. A., Nanda J., Achermann M., Bezel I., McGuire J. A., Piryatinski A. Single-exciton optical gain in semiconductor nanocrystals // Nature. 2007. Vol. 447. No. 7143. pp. 441-446.
RIS |
Цитировать
TY - JOUR
DO - 10.1038/nature05839
UR - https://doi.org/10.1038/nature05839
TI - Single-exciton optical gain in semiconductor nanocrystals
T2 - Nature
AU - Klimov, Victor I.
AU - Ivanov, Sergei A.
AU - Nanda, Jagjit
AU - Achermann, Marc
AU - Bezel, Ilya
AU - McGuire, John A.
AU - Piryatinski, Andrei
PY - 2007
DA - 2007/05/24
PB - Springer Nature
SP - 441-446
IS - 7143
VL - 447
PMID - 17522678
SN - 0028-0836
SN - 1476-4687
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2007_Klimov,
author = {Victor I. Klimov and Sergei A. Ivanov and Jagjit Nanda and Marc Achermann and Ilya Bezel and John A. McGuire and Andrei Piryatinski},
title = {Single-exciton optical gain in semiconductor nanocrystals},
journal = {Nature},
year = {2007},
volume = {447},
publisher = {Springer Nature},
month = {may},
url = {https://doi.org/10.1038/nature05839},
number = {7143},
pages = {441--446},
doi = {10.1038/nature05839}
}
MLA
Цитировать
Klimov, Victor I., et al. “Single-exciton optical gain in semiconductor nanocrystals.” Nature, vol. 447, no. 7143, May. 2007, pp. 441-446. https://doi.org/10.1038/nature05839.