том 466 издание 7307 страницы 756-760

Predicting protein structures with a multiplayer online game

Seth Cooper 1
Firas Khatib 2
Adrien Treuille 1, 3
Janos Barbero 1
Jeehyung Lee 3
Michael Beenen 1
Andrew Leaver-Fay 2, 4
David Baker 2, 5
Zoran Popović 1
Тип публикацииJournal Article
Дата публикации2010-08-03
scimago Q1
wos Q1
БС1
SJR18.288
CiteScore78.1
Impact factor48.5
ISSN00280836, 14764687
Multidisciplinary
Краткое описание
A natural polypeptide chain can fold into a native protein in microseconds, but predicting such stable three-dimensional structure from any given amino-acid sequence and first physical principles remains a formidable computational challenge. Aiming to recruit human visual and strategic powers to the task, Seth Cooper, David Baker and colleagues turned their 'Rosetta' structure-prediction algorithm into an online multiplayer game called Foldit, in which thousands of non-scientists competed and collaborated to produce a rich set of new algorithms and search strategies for protein structure refinement. The work shows that even computationally complex scientific problems can be effectively crowd-sourced using interactive multiplayer games. Predicting the structure of a folded protein from first principles for any given amino-acid sequence remains a formidable computational challenge. To recruit human abilities to the task, these authors turned their Rosetta structure prediction algorithm into an online multiplayer game in which thousands of non-scientists competed and collaborated to produce new algorithms and search strategies for protein structure refinement. This shows that computationally complex problems can be effectively 'crowd-sourced' through interactive multiplayer games. People exert large amounts of problem-solving effort playing computer games. Simple image- and text-recognition tasks have been successfully ‘crowd-sourced’ through games1,2,3, but it is not clear if more complex scientific problems can be solved with human-directed computing. Protein structure prediction is one such problem: locating the biologically relevant native conformation of a protein is a formidable computational challenge given the very large size of the search space. Here we describe Foldit, a multiplayer online game that engages non-scientists in solving hard prediction problems. Foldit players interact with protein structures using direct manipulation tools and user-friendly versions of algorithms from the Rosetta structure prediction methodology4, while they compete and collaborate to optimize the computed energy. We show that top-ranked Foldit players excel at solving challenging structure refinement problems in which substantial backbone rearrangements are necessary to achieve the burial of hydrophobic residues. Players working collaboratively develop a rich assortment of new strategies and algorithms; unlike computational approaches, they explore not only the conformational space but also the space of possible search strategies. The integration of human visual problem-solving and strategy development capabilities with traditional computational algorithms through interactive multiplayer games is a powerful new approach to solving computationally-limited scientific problems.
Найдено 
Найдено 

Топ-30

Журналы

5
10
15
20
25
30
PLoS ONE
28 публикаций, 2.95%
Lecture Notes in Computer Science
27 публикаций, 2.85%
ACS Symposium Series
14 публикаций, 1.48%
Proceedings of the National Academy of Sciences of the United States of America
13 публикаций, 1.37%
Nature Biotechnology
9 публикаций, 0.95%
Nature
9 публикаций, 0.95%
Proceedings of the ACM on Human-Computer Interaction
7 публикаций, 0.74%
Journal of Molecular Biology
7 публикаций, 0.74%
Scientific Reports
6 публикаций, 0.63%
PLoS Computational Biology
6 публикаций, 0.63%
Methods in Molecular Biology
6 публикаций, 0.63%
Bioinformatics
6 публикаций, 0.63%
Journal of Medical Internet Research
5 публикаций, 0.53%
Computers in Human Behavior
5 публикаций, 0.53%
SSRN Electronic Journal
5 публикаций, 0.53%
Computational and Structural Biotechnology Journal
5 публикаций, 0.53%
Proteins: Structure, Function and Genetics
5 публикаций, 0.53%
Biochemistry and Molecular Biology Education
5 публикаций, 0.53%
Journal of Chemical Education
5 публикаций, 0.53%
F1000Research
4 публикации, 0.42%
Applied Sciences (Switzerland)
4 публикации, 0.42%
Nature Communications
4 публикации, 0.42%
Drug Discovery Today
4 публикации, 0.42%
IEEE Access
4 публикации, 0.42%
Science
4 публикации, 0.42%
Journal of Microbiology and Biology Education
4 публикации, 0.42%
Journal of Chemical Physics
3 публикации, 0.32%
PeerJ
3 публикации, 0.32%
Nature Methods
3 публикации, 0.32%
5
10
15
20
25
30

Издатели

20
40
60
80
100
120
140
160
Springer Nature
155 публикаций, 16.35%
Association for Computing Machinery (ACM)
149 публикаций, 15.72%
Elsevier
105 публикаций, 11.08%
Institute of Electrical and Electronics Engineers (IEEE)
86 публикаций, 9.07%
Wiley
58 публикаций, 6.12%
Public Library of Science (PLoS)
38 публикаций, 4.01%
American Chemical Society (ACS)
36 публикаций, 3.8%
Oxford University Press
23 публикации, 2.43%
Taylor & Francis
23 публикации, 2.43%
IGI Global
22 публикации, 2.32%
MDPI
20 публикаций, 2.11%
Cold Spring Harbor Laboratory
20 публикаций, 2.11%
Proceedings of the National Academy of Sciences (PNAS)
13 публикаций, 1.37%
Frontiers Media S.A.
12 публикаций, 1.27%
Royal Society of Chemistry (RSC)
11 публикаций, 1.16%
Cambridge University Press
10 публикаций, 1.05%
Emerald
8 публикаций, 0.84%
SAGE
8 публикаций, 0.84%
JMIR Publications
7 публикаций, 0.74%
Ovid Technologies (Wolters Kluwer Health)
7 публикаций, 0.74%
American Association for the Advancement of Science (AAAS)
7 публикаций, 0.74%
IOP Publishing
6 публикаций, 0.63%
Annual Reviews
6 публикаций, 0.63%
Mary Ann Liebert
5 публикаций, 0.53%
Social Science Electronic Publishing
5 публикаций, 0.53%
Walter de Gruyter
5 публикаций, 0.53%
American Society for Microbiology
5 публикаций, 0.53%
AIP Publishing
4 публикации, 0.42%
F1000 Research
4 публикации, 0.42%
20
40
60
80
100
120
140
160
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
949
Поделиться
Цитировать
ГОСТ |
Цитировать
Cooper S. et al. Predicting protein structures with a multiplayer online game // Nature. 2010. Vol. 466. No. 7307. pp. 756-760.
ГОСТ со всеми авторами (до 50) Скопировать
Cooper S., Khatib F., Treuille A., Barbero J., Lee J., Beenen M., Leaver-Fay A., Baker D., Popović Z. Predicting protein structures with a multiplayer online game // Nature. 2010. Vol. 466. No. 7307. pp. 756-760.
RIS |
Цитировать
TY - JOUR
DO - 10.1038/nature09304
UR - https://www.nature.com/articles/nature09304
TI - Predicting protein structures with a multiplayer online game
T2 - Nature
AU - Cooper, Seth
AU - Khatib, Firas
AU - Treuille, Adrien
AU - Barbero, Janos
AU - Lee, Jeehyung
AU - Beenen, Michael
AU - Leaver-Fay, Andrew
AU - Baker, David
AU - Popović, Zoran
PY - 2010
DA - 2010/08/03
PB - Springer Nature
SP - 756-760
IS - 7307
VL - 466
PMID - 20686574
SN - 0028-0836
SN - 1476-4687
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2010_Cooper,
author = {Seth Cooper and Firas Khatib and Adrien Treuille and Janos Barbero and Jeehyung Lee and Michael Beenen and Andrew Leaver-Fay and David Baker and Zoran Popović},
title = {Predicting protein structures with a multiplayer online game},
journal = {Nature},
year = {2010},
volume = {466},
publisher = {Springer Nature},
month = {aug},
url = {https://www.nature.com/articles/nature09304},
number = {7307},
pages = {756--760},
doi = {10.1038/nature09304}
}
MLA
Цитировать
Cooper, Seth, et al. “Predicting protein structures with a multiplayer online game.” Nature, vol. 466, no. 7307, Aug. 2010, pp. 756-760. https://www.nature.com/articles/nature09304.