Nanoscale thermal imaging of dissipation in quantum systems
D Halbertal
1
,
J. Cuppens
1, 2
,
M Ben Shalom
3, 4
,
L. Embon
1, 5
,
N. Shadmi
6
,
Y Anahory
1
,
H. R. Naren
1
,
Sarkar J
1
,
A. Uri
1
,
Y Ronen
1
,
Y. MYASOEDOV
1
,
L.S. LEVITOV
7
,
E Joselevich
6
,
A. K. GEIM
3, 4
,
E. ZELDOV
1
2
Тип публикации: Journal Article
Дата публикации: 2016-10-26
scimago Q1
wos Q1
БС1
SJR: 18.288
CiteScore: 78.1
Impact factor: 48.5
ISSN: 00280836, 14764687
PubMed ID:
27786173
Multidisciplinary
Краткое описание
A cryogenic thermal imaging technique that uses a superconducting quantum interference device fabricated on the tip of a sharp pipette can be used to image the thermal signature of extremely low power nanometre-scale dissipation processes. The details of how and where energy is dissipated are fundamental to the microscopic behaviour of quantum systems. Dorri Halbertal et al. have developed a cryogenic thermal imaging technique that promises to help to elucidate these details. The key component of their method is a superconducting quantum interference device mounted on the tip of a sharp pipette, which they show can be used to image the thermal signature of extremely low-energy nanoscale dissipation processes. The potential of the system is demonstrated in preliminary studies of systems including nanotubes and grapheme; future investigations will target more exotic states of matter, such as those associated with quantum Hall systems. Energy dissipation is a fundamental process governing the dynamics of physical, chemical and biological systems. It is also one of the main characteristics that distinguish quantum from classical phenomena. In particular, in condensed matter physics, scattering mechanisms, loss of quantum information or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Yet the microscopic behaviour of a system is usually not formulated in terms of dissipation because energy dissipation is not a readily measurable quantity on the micrometre scale. Although nanoscale thermometry has gained much recent interest1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, existing thermal imaging methods are not sensitive enough for the study of quantum systems and are also unsuitable for the low-temperature operation that is required. Here we report a nano-thermometer based on a superconducting quantum interference device with a diameter of less than 50 nanometres that resides at the apex of a sharp pipette: it provides scanning cryogenic thermal sensing that is four orders of magnitude more sensitive than previous devices—below 1 μK Hz−1/2. This non-contact, non-invasive thermometry allows thermal imaging of very low intensity, nanoscale energy dissipation down to the fundamental Landauer limit16,17,18 of 40 femtowatts for continuous readout of a single qubit at one gigahertz at 4.2 kelvin. These advances enable the observation of changes in dissipation due to single-electron charging of individual quantum dots in carbon nanotubes. They also reveal a dissipation mechanism attributable to resonant localized states in graphene encapsulated within hexagonal boron nitride, opening the door to direct thermal imaging of nanoscale dissipation processes in quantum matter.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
5
10
15
20
25
|
|
|
Physical Review B
25 публикаций, 13.37%
|
|
|
Review of Scientific Instruments
8 публикаций, 4.28%
|
|
|
Physical Review Applied
7 публикаций, 3.74%
|
|
|
Nano Letters
7 публикаций, 3.74%
|
|
|
Applied Physics Letters
6 публикаций, 3.21%
|
|
|
Journal of Applied Physics
5 публикаций, 2.67%
|
|
|
Nature Physics
5 публикаций, 2.67%
|
|
|
Nature
5 публикаций, 2.67%
|
|
|
Science advances
4 публикации, 2.14%
|
|
|
Reviews of Modern Physics
3 публикации, 1.6%
|
|
|
Physical Review Letters
3 публикации, 1.6%
|
|
|
Physical Review A
3 публикации, 1.6%
|
|
|
Physical Review Research
3 публикации, 1.6%
|
|
|
Scientific Reports
3 публикации, 1.6%
|
|
|
Nature Communications
3 публикации, 1.6%
|
|
|
Nanoscale
3 публикации, 1.6%
|
|
|
Science
3 публикации, 1.6%
|
|
|
Physical Review X
2 публикации, 1.07%
|
|
|
PRX Quantum
2 публикации, 1.07%
|
|
|
Physics Reports
2 публикации, 1.07%
|
|
|
Quantum Science and Technology
2 публикации, 1.07%
|
|
|
Advanced Materials
2 публикации, 1.07%
|
|
|
Advanced Functional Materials
2 публикации, 1.07%
|
|
|
Journal of Chemical Theory and Computation
2 публикации, 1.07%
|
|
|
ACS applied materials & interfaces
2 публикации, 1.07%
|
|
|
New Journal of Physics
2 публикации, 1.07%
|
|
|
SciPost Physics
2 публикации, 1.07%
|
|
|
Acta Physica Sinica
2 публикации, 1.07%
|
|
|
Physical Review E
2 публикации, 1.07%
|
|
|
5
10
15
20
25
|
Издатели
|
10
20
30
40
50
|
|
|
American Physical Society (APS)
50 публикаций, 26.74%
|
|
|
AIP Publishing
24 публикации, 12.83%
|
|
|
Springer Nature
24 публикации, 12.83%
|
|
|
Elsevier
20 публикаций, 10.7%
|
|
|
American Chemical Society (ACS)
14 публикаций, 7.49%
|
|
|
Wiley
10 публикаций, 5.35%
|
|
|
IOP Publishing
9 публикаций, 4.81%
|
|
|
American Association for the Advancement of Science (AAAS)
7 публикаций, 3.74%
|
|
|
Royal Society of Chemistry (RSC)
6 публикаций, 3.21%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
6 публикаций, 3.21%
|
|
|
Optica Publishing Group
3 публикации, 1.6%
|
|
|
MDPI
2 публикации, 1.07%
|
|
|
Stichting SciPost
2 публикации, 1.07%
|
|
|
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
2 публикации, 1.07%
|
|
|
Societa Italiana di Fisica
1 публикация, 0.53%
|
|
|
Cambridge University Press
1 публикация, 0.53%
|
|
|
Oxford University Press
1 публикация, 0.53%
|
|
|
Annual Reviews
1 публикация, 0.53%
|
|
|
SPIE-Intl Soc Optical Eng
1 публикация, 0.53%
|
|
|
Pleiades Publishing
1 публикация, 0.53%
|
|
|
Treatise
1 публикация, 0.53%
|
|
|
10
20
30
40
50
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
187
Всего цитирований:
187
Цитирований c 2024:
45
(24%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Halbertal D. et al. Nanoscale thermal imaging of dissipation in quantum systems // Nature. 2016. Vol. 539. No. 7629. pp. 407-410.
ГОСТ со всеми авторами (до 50)
Скопировать
Halbertal D., Cuppens J., Shalom M. B., Embon L., Shadmi N., Anahory Y., Naren H. R., J S., Uri A., Ronen Y., MYASOEDOV Y., LEVITOV L., Joselevich E., GEIM A. K., ZELDOV E. Nanoscale thermal imaging of dissipation in quantum systems // Nature. 2016. Vol. 539. No. 7629. pp. 407-410.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1038/nature19843
UR - https://doi.org/10.1038/nature19843
TI - Nanoscale thermal imaging of dissipation in quantum systems
T2 - Nature
AU - Halbertal, D
AU - Cuppens, J.
AU - Shalom, M Ben
AU - Embon, L.
AU - Shadmi, N.
AU - Anahory, Y
AU - Naren, H. R.
AU - J, Sarkar
AU - Uri, A.
AU - Ronen, Y
AU - MYASOEDOV, Y.
AU - LEVITOV, L.S.
AU - Joselevich, E
AU - GEIM, A. K.
AU - ZELDOV, E.
PY - 2016
DA - 2016/10/26
PB - Springer Nature
SP - 407-410
IS - 7629
VL - 539
PMID - 27786173
SN - 0028-0836
SN - 1476-4687
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2016_Halbertal,
author = {D Halbertal and J. Cuppens and M Ben Shalom and L. Embon and N. Shadmi and Y Anahory and H. R. Naren and Sarkar J and A. Uri and Y Ronen and Y. MYASOEDOV and L.S. LEVITOV and E Joselevich and A. K. GEIM and E. ZELDOV},
title = {Nanoscale thermal imaging of dissipation in quantum systems},
journal = {Nature},
year = {2016},
volume = {539},
publisher = {Springer Nature},
month = {oct},
url = {https://doi.org/10.1038/nature19843},
number = {7629},
pages = {407--410},
doi = {10.1038/nature19843}
}
Цитировать
MLA
Скопировать
Halbertal, D., et al. “Nanoscale thermal imaging of dissipation in quantum systems.” Nature, vol. 539, no. 7629, Oct. 2016, pp. 407-410. https://doi.org/10.1038/nature19843.