Open Access
Open access
Nature Communications, volume 7, issue 1, publication number 11954

Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor

Publication typeJournal Article
Publication date2016-06-17
scimago Q1
SJR4.887
CiteScore24.9
Impact factor14.7
ISSN20411723
PubMed ID:  27311710
General Chemistry
General Biochemistry, Genetics and Molecular Biology
General Physics and Astronomy
Abstract
The realization of low-cost photodetectors with high sensitivity, high quantum efficiency, high gain and fast photoresponse in the visible and short-wave infrared remains one of the challenges in optoelectronics. Two classes of photodetectors that have been developed are photodiodes and phototransistors, each of them with specific drawbacks. Here we merge both types into a hybrid photodetector device by integrating a colloidal quantum dot photodiode atop a graphene phototransistor. Our hybrid detector overcomes the limitations of a phototransistor in terms of speed, quantum efficiency and linear dynamic range. We report quantum efficiencies in excess of 70%, gain of 105 and linear dynamic range of 110 dB and 3 dB bandwidth of 1.5 kHz. This constitutes a demonstration of an optoelectronically active device integrated directly atop graphene and paves the way towards a generation of flexible highly performing hybrid two-dimensional (2D)/0D optoelectronics. The combination of fast photo-response and high gain plays a pivotal role in photodetector devices. Here the authors combine a colloidal quantum dot photodiode with a graphene phototransistor to overcome the speed, quantum efficiency and linear dynamic range limitations of available phototransistors.
Found 
Found 

Top-30

Journals

2
4
6
8
10
12
14
2
4
6
8
10
12
14

Publishers

10
20
30
40
50
60
10
20
30
40
50
60
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?