Nature Methods, volume 2, issue 10, pages 743-749

Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots

Publication typeJournal Article
Publication date2005-09-22
Journal: Nature Methods
Q1
Q1
SJR14.796
CiteScore58.7
Impact factor36.1
ISSN15487091, 15487105
Biochemistry
Molecular Biology
Cell Biology
Biotechnology
Abstract
The importance of locating proteins in their context within cells has been heightened recently by the accomplishments in molecular structure and systems biology. Although light microscopy (LM) has been extensively used for mapping protein localization, many studies require the additional resolution of the electron microscope. Here we report the application of small nanocrystals (Quantum dots; QDs) to specifically and efficiently label multiple distinct endogenous proteins. QDs are both fluorescent and electron dense, facilitating their use for correlated microscopic analysis. Furthermore, QDs can be discriminated optically by their emission wavelength and physically by size, making them invaluable for multilabeling analysis. We developed pre-embedding labeling criteria using QDs that allows optimization at the light level, before continuing with electron microscopy (EM). We provide examples of double and triple immunolabeling using light, electron and correlated microscopy in rat cells and mouse tissue. We conclude that QDs aid precise high-throughput determination of protein distribution.

Top-30

Journals

2
4
6
8
10
12
14
2
4
6
8
10
12
14

Publishers

10
20
30
40
50
60
70
80
10
20
30
40
50
60
70
80
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?