Open Access
Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits
Тип публикации: Journal Article
Дата публикации: 2018-12-10
scimago Q1
wos Q1
БС1
SJR: 4.761
CiteScore: 23.4
Impact factor: 15.7
ISSN: 20411723
PubMed ID:
30552327
General Chemistry
General Biochemistry, Genetics and Molecular Biology
Multidisciplinary
General Physics and Astronomy
Краткое описание
Spiking neural networks, the most realistic artificial representation of biological nervous systems, are promising due to their inherent local training rules that enable low-overhead online learning, and energy-efficient information encoding. Their downside is more demanding functionality of the artificial synapses, notably including spike-timing-dependent plasticity, which makes their compact efficient hardware implementation challenging with conventional device technologies. Recent work showed that memristors are excellent candidates for artificial synapses, although reports of even simple neuromorphic systems are still very rare. In this study, we experimentally demonstrate coincidence detection using a spiking neural network, implemented with passively integrated metal-oxide memristive synapses connected to an analogue leaky-integrate-and-fire silicon neuron. By employing spike-timing-dependent plasticity learning, the network is able to robustly detect the coincidence by selectively increasing the synaptic efficacies corresponding to the synchronized inputs. Not surprisingly, our results indicate that device-to-device variation is the main challenge towards realization of more complex spiking networks. Hardware implementation of spiking neural networks holds promise for high energy efficient brain-inspired computing. Here, Prezioso et al. realize the detection of synchrony in a demo circuit composed of 20 metal-oxide memristor synapses connected to a leaky-integrate-and-fire silicon neuron.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
5
6
7
8
9
|
|
|
Nature Communications
9 публикаций, 4.74%
|
|
|
Advanced Intelligent Systems
8 публикаций, 4.21%
|
|
|
Advanced Electronic Materials
8 публикаций, 4.21%
|
|
|
Frontiers in Neuroscience
6 публикаций, 3.16%
|
|
|
Nanoscale
6 публикаций, 3.16%
|
|
|
Chaos, Solitons and Fractals
5 публикаций, 2.63%
|
|
|
Applied Physics Letters
4 публикации, 2.11%
|
|
|
Advanced Materials
4 публикации, 2.11%
|
|
|
ACS Applied Electronic Materials
4 публикации, 2.11%
|
|
|
Nanotechnology
3 публикации, 1.58%
|
|
|
Neuromorphic Computing and Engineering
3 публикации, 1.58%
|
|
|
iScience
3 публикации, 1.58%
|
|
|
Nanobiotechnology Reports
3 публикации, 1.58%
|
|
|
IEEE Transactions on Electron Devices
3 публикации, 1.58%
|
|
|
IEEE Electron Device Letters
3 публикации, 1.58%
|
|
|
ACS applied materials & interfaces
3 публикации, 1.58%
|
|
|
Chinese Physics B
2 публикации, 1.05%
|
|
|
AIP Advances
2 публикации, 1.05%
|
|
|
Science and Technology of Advanced Materials
2 публикации, 1.05%
|
|
|
Electronics (Switzerland)
2 публикации, 1.05%
|
|
|
Scientific Reports
2 публикации, 1.05%
|
|
|
Nature Electronics
2 публикации, 1.05%
|
|
|
BioNanoScience
2 публикации, 1.05%
|
|
|
Neural Networks
2 публикации, 1.05%
|
|
|
Nano Energy
2 публикации, 1.05%
|
|
|
Physica Status Solidi (A) Applications and Materials Science
2 публикации, 1.05%
|
|
|
Small Structures
2 публикации, 1.05%
|
|
|
IEEE Access
2 публикации, 1.05%
|
|
|
IEEE Transactions on Very Large Scale Integration (VLSI) Systems
2 публикации, 1.05%
|
|
|
1
2
3
4
5
6
7
8
9
|
Издатели
|
5
10
15
20
25
30
35
40
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
36 публикаций, 18.95%
|
|
|
Wiley
30 публикаций, 15.79%
|
|
|
Springer Nature
27 публикаций, 14.21%
|
|
|
Elsevier
21 публикация, 11.05%
|
|
|
Frontiers Media S.A.
12 публикаций, 6.32%
|
|
|
IOP Publishing
11 публикаций, 5.79%
|
|
|
AIP Publishing
11 публикаций, 5.79%
|
|
|
American Chemical Society (ACS)
10 публикаций, 5.26%
|
|
|
Royal Society of Chemistry (RSC)
9 публикаций, 4.74%
|
|
|
MDPI
6 публикаций, 3.16%
|
|
|
Pleiades Publishing
6 публикаций, 3.16%
|
|
|
Taylor & Francis
2 публикации, 1.05%
|
|
|
American Vacuum Society
1 публикация, 0.53%
|
|
|
University of Electronic Science and Technology of China
1 публикация, 0.53%
|
|
|
American Association for the Advancement of Science (AAAS)
1 публикация, 0.53%
|
|
|
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
1 публикация, 0.53%
|
|
|
Cold Spring Harbor Laboratory
1 публикация, 0.53%
|
|
|
American Physical Society (APS)
1 публикация, 0.53%
|
|
|
Treatise
1 публикация, 0.53%
|
|
|
SAGE
1 публикация, 0.53%
|
|
|
5
10
15
20
25
30
35
40
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
190
Всего цитирований:
190
Цитирований c 2024:
47
(24.74%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Prezioso M. et al. Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits // Nature Communications. 2018. Vol. 9. No. 1. 5311
ГОСТ со всеми авторами (до 50)
Скопировать
Prezioso M., Mahmoodi M. R., Bayat F. M., Nili H., Kim H., Vincent A., Strukov D. B. Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits // Nature Communications. 2018. Vol. 9. No. 1. 5311
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1038/s41467-018-07757-y
UR - https://doi.org/10.1038/s41467-018-07757-y
TI - Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits
T2 - Nature Communications
AU - Prezioso, M.
AU - Mahmoodi, M R
AU - Bayat, F Merrikh
AU - Nili, H
AU - Kim, H.
AU - Vincent, A.
AU - Strukov, D B
PY - 2018
DA - 2018/12/10
PB - Springer Nature
IS - 1
VL - 9
PMID - 30552327
SN - 2041-1723
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2018_Prezioso,
author = {M. Prezioso and M R Mahmoodi and F Merrikh Bayat and H Nili and H. Kim and A. Vincent and D B Strukov},
title = {Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits},
journal = {Nature Communications},
year = {2018},
volume = {9},
publisher = {Springer Nature},
month = {dec},
url = {https://doi.org/10.1038/s41467-018-07757-y},
number = {1},
pages = {5311},
doi = {10.1038/s41467-018-07757-y}
}