Probing the solar coronal magnetic field with physics-informed neural networks
Тип публикации: Journal Article
Дата публикации: 2023-07-13
scimago Q1
wos Q1
БС1
SJR: 4.006
CiteScore: 22.9
Impact factor: 14.3
ISSN: 23973366
Astronomy and Astrophysics
Краткое описание
While the photospheric magnetic field of our Sun is routinely measured, its extent into the upper atmosphere is typically not accessible by direct observations. Here we present an approach for coronal magnetic-field extrapolation, using a neural network that integrates observational data and the physical force-free magnetic-field model. Our method flexibly finds a trade-off between the observation and force-free magnetic-field assumption, improving the understanding of the connection between the observation and the underlying physics. We utilize meta-learning concepts to simulate the evolution of active region NOAA 11158. Our simulation of 5 days of observations at full cadence (12 minutes) requires less than 12 hours of total computation time, allowing for real-time force-free magnetic-field extrapolations. The application to an analytical magnetic-field solution, a systematic analysis of the time evolution of free magnetic energy and magnetic helicity in the coronal volume, as well as comparison with extreme-ultraviolet observations, demonstrates the validity of our approach. The obtained temporal and spatial depletion of free magnetic energy unambiguously relates to the observed flare activity. The application of physics-informed neural networks enables an estimation of the solar coronal magnetic field in quasi real time. A comparison with extreme-ultraviolet observations reveals that the model provides a realistic approximation and the modelled coronal field has a clear relationship with flaring activity.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
5
6
7
8
9
|
|
|
Astrophysical Journal
9 публикаций, 18.75%
|
|
|
Astronomy and Astrophysics
7 публикаций, 14.58%
|
|
|
Astrophysical Journal Letters
6 публикаций, 12.5%
|
|
|
Monthly Notices of the Royal Astronomical Society
3 публикации, 6.25%
|
|
|
Solar Physics
3 публикации, 6.25%
|
|
|
Atmosphere
2 публикации, 4.17%
|
|
|
Advances in Space Research
2 публикации, 4.17%
|
|
|
Nature Astronomy
1 публикация, 2.08%
|
|
|
Physics of Plasmas
1 публикация, 2.08%
|
|
|
Universe
1 публикация, 2.08%
|
|
|
Frontiers in Astronomy and Space Sciences
1 публикация, 2.08%
|
|
|
Earth, Planets and Space
1 публикация, 2.08%
|
|
|
Space Weather
1 публикация, 2.08%
|
|
|
Knowledge-Based Systems
1 публикация, 2.08%
|
|
|
Research in Astronomy and Astrophysics
1 публикация, 2.08%
|
|
|
Astrophysics and Space Science Library
1 публикация, 2.08%
|
|
|
Briefings in Bioinformatics
1 публикация, 2.08%
|
|
|
Astrophysical Journal, Supplement Series
1 публикация, 2.08%
|
|
|
Journal of Geophysical Research Space Physics
1 публикация, 2.08%
|
|
|
Uspekhi Fizicheskih Nauk
1 публикация, 2.08%
|
|
|
Journal of Geophysical Research Machine Learning and Computation
1 публикация, 2.08%
|
|
|
1
2
3
4
5
6
7
8
9
|
Издатели
|
2
4
6
8
10
12
14
16
|
|
|
American Astronomical Society
16 публикаций, 33.33%
|
|
|
EDP Sciences
7 публикаций, 14.58%
|
|
|
Springer Nature
6 публикаций, 12.5%
|
|
|
Oxford University Press
4 публикации, 8.33%
|
|
|
MDPI
3 публикации, 6.25%
|
|
|
Elsevier
3 публикации, 6.25%
|
|
|
American Geophysical Union
3 публикации, 6.25%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
2 публикации, 4.17%
|
|
|
AIP Publishing
1 публикация, 2.08%
|
|
|
Frontiers Media S.A.
1 публикация, 2.08%
|
|
|
IOP Publishing
1 публикация, 2.08%
|
|
|
Uspekhi Fizicheskikh Nauk Journal
1 публикация, 2.08%
|
|
|
2
4
6
8
10
12
14
16
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
48
Всего цитирований:
48
Цитирований c 2025:
22
(45.83%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Jarolim R. et al. Probing the solar coronal magnetic field with physics-informed neural networks // Nature Astronomy. 2023. Vol. 7. No. 10. pp. 1171-1179.
ГОСТ со всеми авторами (до 50)
Скопировать
Jarolim R., Thalmann J. K., Veronig A. M., Podladchikova T. Probing the solar coronal magnetic field with physics-informed neural networks // Nature Astronomy. 2023. Vol. 7. No. 10. pp. 1171-1179.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1038/s41550-023-02030-9
UR - https://www.nature.com/articles/s41550-023-02030-9
TI - Probing the solar coronal magnetic field with physics-informed neural networks
T2 - Nature Astronomy
AU - Jarolim, Robert
AU - Thalmann, J. K.
AU - Veronig, Astrid M.
AU - Podladchikova, Tatiana
PY - 2023
DA - 2023/07/13
PB - Springer Nature
SP - 1171-1179
IS - 10
VL - 7
SN - 2397-3366
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2023_Jarolim,
author = {Robert Jarolim and J. K. Thalmann and Astrid M. Veronig and Tatiana Podladchikova},
title = {Probing the solar coronal magnetic field with physics-informed neural networks},
journal = {Nature Astronomy},
year = {2023},
volume = {7},
publisher = {Springer Nature},
month = {jul},
url = {https://www.nature.com/articles/s41550-023-02030-9},
number = {10},
pages = {1171--1179},
doi = {10.1038/s41550-023-02030-9}
}
Цитировать
MLA
Скопировать
Jarolim, Robert, et al. “Probing the solar coronal magnetic field with physics-informed neural networks.” Nature Astronomy, vol. 7, no. 10, Jul. 2023, pp. 1171-1179. https://www.nature.com/articles/s41550-023-02030-9.