Nature Energy, volume 5, issue 4, pages 299-308

High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes

Yong-Gun Lee 1
Satoshi Fujiki 2
Changhoon Jung 1
Naoki Suzuki 2
Nobuyoshi Yashiro 2
Ryo Omoda 2
Dong-su Ko 1
Tomoyuki Shiratsuchi 2
Toshinori Sugimoto 1
Saebom Ryu 1
Jun-Hwan Ku 1
Taku Watanabe 2
Youngsin Park 1
Yuichi Aihara 2
D. Im 1
In Taek Han 1
Publication typeJournal Article
Publication date2020-03-09
Journal: Nature Energy
Quartile SCImago
Q1
Quartile WOS
Q1
Impact factor56.7
ISSN20587546
Electronic, Optical and Magnetic Materials
Energy Engineering and Power Technology
Fuel Technology
Renewable Energy, Sustainability and the Environment
Abstract
An all-solid-state battery with a lithium metal anode is a strong candidate for surpassing conventional lithium-ion battery capabilities. However, undesirable Li dendrite growth and low Coulombic efficiency impede their practical application. Here we report that a high-performance all-solid-state lithium metal battery with a sulfide electrolyte is enabled by a Ag–C composite anode with no excess Li. We show that the thin Ag–C layer can effectively regulate Li deposition, which leads to a genuinely long electrochemical cyclability. In our full-cell demonstrations, we employed a high-Ni layered oxide cathode with a high specific capacity (>210 mAh g−1) and high areal capacity (>6.8 mAh cm−2) and an argyrodite-type sulfide electrolyte. A warm isostatic pressing technique was also introduced to improve the contact between the electrode and the electrolyte. A prototype pouch cell (0.6 Ah) thus prepared exhibited a high energy density (>900 Wh l−1), stable Coulombic efficiency over 99.8% and long cycle life (1,000 times). Solid-state Li metal batteries represent one of the most promising rechargeable battery technologies. Here the authors report an exceptional high-performance prototype solid-state pouch cell made of a sulfide electrolyte, a high-Ni layered oxide cathode and, in particular, a silver–carbon composite anode with no excess Li.

Top-30

Citations by journals

10
20
30
40
50
60
70
Advanced Energy Materials
70 publications, 6.68%
Energy Storage Materials
48 publications, 4.58%
ACS Energy Letters
42 publications, 4.01%
ACS applied materials & interfaces
40 publications, 3.82%
Advanced Functional Materials
39 publications, 3.72%
Journal of Materials Chemistry A
39 publications, 3.72%
Journal of Power Sources
38 publications, 3.63%
Advanced Materials
37 publications, 3.53%
Chemical Engineering Journal
24 publications, 2.29%
Nature Communications
22 publications, 2.1%
Journal of the Electrochemical Society
22 publications, 2.1%
ACS Applied Energy Materials
20 publications, 1.91%
Energy and Environmental Science
20 publications, 1.91%
Advanced Science
19 publications, 1.81%
Small
19 publications, 1.81%
Chemistry of Materials
18 publications, 1.72%
Joule
15 publications, 1.43%
Batteries & Supercaps
14 publications, 1.34%
Angewandte Chemie
14 publications, 1.34%
Angewandte Chemie - International Edition
14 publications, 1.34%
Nano Letters
13 publications, 1.24%
Nature Energy
12 publications, 1.15%
Batteries
11 publications, 1.05%
Journal of Energy Chemistry
10 publications, 0.95%
Electrochimica Acta
10 publications, 0.95%
Journal of Energy Storage
9 publications, 0.86%
Advanced Energy and Sustainability Research
9 publications, 0.86%
ACS Nano
9 publications, 0.86%
eTransportation
8 publications, 0.76%
10
20
30
40
50
60
70

Citations by publishers

50
100
150
200
250
300
Wiley
299 publications, 28.53%
Elsevier
291 publications, 27.77%
American Chemical Society (ACS)
176 publications, 16.79%
Royal Society of Chemistry (RSC)
91 publications, 8.68%
Springer Nature
78 publications, 7.44%
Multidisciplinary Digital Publishing Institute (MDPI)
23 publications, 2.19%
The Electrochemical Society
22 publications, 2.1%
IOP Publishing
11 publications, 1.05%
American Association for the Advancement of Science (AAAS)
10 publications, 0.95%
Frontiers Media S.A.
5 publications, 0.48%
American Institute of Physics (AIP)
4 publications, 0.38%
Nonferrous Metals Society of China
4 publications, 0.38%
Cambridge University Press
4 publications, 0.38%
Chinese Physical Society
3 publications, 0.29%
Materials Research Society
2 publications, 0.19%
Oxford University Press
2 publications, 0.19%
Research Square Platform LLC
2 publications, 0.19%
OAE Publishing Inc.
2 publications, 0.19%
World Scientific
1 publication, 0.1%
Korean Ceramic Society
1 publication, 0.1%
Tianjin Daxue/Tianjin University
1 publication, 0.1%
University of Science and Technology Beijing
1 publication, 0.1%
Polymer Society of Korea
1 publication, 0.1%
Korean Society of Industrial Engineering Chemistry
1 publication, 0.1%
ASME
1 publication, 0.1%
Walter de Gruyter
1 publication, 0.1%
Hans Publishers
1 publication, 0.1%
IEEE
1 publication, 0.1%
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 publication, 0.1%
50
100
150
200
250
300
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST |
Cite this
GOST Copy
Lee Y. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes // Nature Energy. 2020. Vol. 5. No. 4. pp. 299-308.
GOST all authors (up to 50) Copy
Lee Y., Fujiki S., Jung C., Suzuki N., Yashiro N., Omoda R., Ko D., Shiratsuchi T., Sugimoto T., Ryu S., Ku J., Watanabe T., Park Y., Aihara Y., Im D., Han I. T. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes // Nature Energy. 2020. Vol. 5. No. 4. pp. 299-308.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41560-020-0575-z
UR - https://www.nature.com/articles/s41560-020-0575-z
TI - High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes
T2 - Nature Energy
AU - Lee, Yong-Gun
AU - Fujiki, Satoshi
AU - Jung, Changhoon
AU - Suzuki, Naoki
AU - Yashiro, Nobuyoshi
AU - Omoda, Ryo
AU - Ko, Dong-su
AU - Shiratsuchi, Tomoyuki
AU - Sugimoto, Toshinori
AU - Ryu, Saebom
AU - Ku, Jun-Hwan
AU - Watanabe, Taku
AU - Park, Youngsin
AU - Aihara, Yuichi
AU - Im, D.
AU - Han, In Taek
PY - 2020
DA - 2020/03/09 00:00:00
PB - Springer Nature
SP - 299-308
IS - 4
VL - 5
SN - 2058-7546
ER -
BibTex |
Cite this
BibTex Copy
@article{2020_Lee,
author = {Yong-Gun Lee and Satoshi Fujiki and Changhoon Jung and Naoki Suzuki and Nobuyoshi Yashiro and Ryo Omoda and Dong-su Ko and Tomoyuki Shiratsuchi and Toshinori Sugimoto and Saebom Ryu and Jun-Hwan Ku and Taku Watanabe and Youngsin Park and Yuichi Aihara and D. Im and In Taek Han},
title = {High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes},
journal = {Nature Energy},
year = {2020},
volume = {5},
publisher = {Springer Nature},
month = {mar},
url = {https://www.nature.com/articles/s41560-020-0575-z},
number = {4},
pages = {299--308},
doi = {10.1038/s41560-020-0575-z}
}
MLA
Cite this
MLA Copy
Lee, Yong-Gun, et al. “High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes.” Nature Energy, vol. 5, no. 4, Mar. 2020, pp. 299-308. https://www.nature.com/articles/s41560-020-0575-z.
Found error?