том 19 издание 3 страницы 323-329

Quantum dot solids showing state-resolved band-like transport

Тип публикацииJournal Article
Дата публикации2020-01-27
scimago Q1
wos Q1
БС1
SJR14.204
CiteScore61.8
Impact factor38.5
ISSN14761122, 14764660
General Chemistry
Condensed Matter Physics
General Materials Science
Mechanical Engineering
Mechanics of Materials
Краткое описание
Improving charge mobility in quantum dot (QD) films is important for the performance of photodetectors, solar cells and light-emitting diodes. However, these applications also require preservation of well defined QD electronic states and optical transitions. Here, we present HgTe QD films that show high mobility for charges transported through discrete QD states. A hybrid surface passivation process efficiently eliminates surface states, provides tunable air-stable n and p doping and enables hysteresis-free filling of QD states evidenced by strong conductance modulation. QD films dried at room temperature without any post-treatments exhibit mobility up to μ ~ 8 cm2 V−1 s−1 at a low carrier density of less than one electron per QD, band-like behaviour down to 77 K, and similar drift and Hall mobilities at all temperatures. This unprecedented set of electronic properties raises important questions about the delocalization and hopping mechanisms for transport in QD solids, and introduces opportunities for improving QD technologies. High charge mobility while retaining signatures of quantum-confined states is obtained in films of surface-passivated HgTe quantum dots.
Найдено 
Найдено 

Топ-30

Журналы

2
4
6
8
10
12
14
16
Nano Letters
15 публикаций, 8.15%
ACS Nano
12 публикаций, 6.52%
ACS Photonics
11 публикаций, 5.98%
Journal of Physical Chemistry Letters
9 публикаций, 4.89%
Nanoscale
9 публикаций, 4.89%
Advanced Materials
6 публикаций, 3.26%
Journal of Physical Chemistry C
6 публикаций, 3.26%
Chemistry of Materials
5 публикаций, 2.72%
Nature Communications
5 публикаций, 2.72%
Journal of Materials Chemistry C
5 публикаций, 2.72%
Advanced Optical Materials
4 публикации, 2.17%
Journal of Chemical Physics
3 публикации, 1.63%
Materials
3 публикации, 1.63%
ACS applied materials & interfaces
3 публикации, 1.63%
ACS Applied Electronic Materials
3 публикации, 1.63%
Advanced Functional Materials
3 публикации, 1.63%
Science
3 публикации, 1.63%
Applied Physics Letters
2 публикации, 1.09%
Nature Materials
2 публикации, 1.09%
Physica E: Low-Dimensional Systems and Nanostructures
2 публикации, 1.09%
Light: Science and Applications
2 публикации, 1.09%
Chemical Reviews
2 публикации, 1.09%
Chemical Science
2 публикации, 1.09%
Chemical Communications
2 публикации, 1.09%
APL Photonics
2 публикации, 1.09%
Small Methods
2 публикации, 1.09%
Nano Research
2 публикации, 1.09%
Applied Physics Reviews
1 публикация, 0.54%
Journal of Applied Crystallography
1 публикация, 0.54%
2
4
6
8
10
12
14
16

Издатели

10
20
30
40
50
60
70
80
American Chemical Society (ACS)
72 публикации, 39.13%
Wiley
25 публикаций, 13.59%
Royal Society of Chemistry (RSC)
22 публикации, 11.96%
Springer Nature
18 публикаций, 9.78%
Elsevier
12 публикаций, 6.52%
AIP Publishing
8 публикаций, 4.35%
MDPI
8 публикаций, 4.35%
IOP Publishing
3 публикации, 1.63%
American Association for the Advancement of Science (AAAS)
3 публикации, 1.63%
Tsinghua University Press
2 публикации, 1.09%
SPIE-Intl Soc Optical Eng
2 публикации, 1.09%
International Union of Crystallography (IUCr)
1 публикация, 0.54%
Cambridge University Press
1 публикация, 0.54%
Pleiades Publishing
1 публикация, 0.54%
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 0.54%
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 публикация, 0.54%
Taylor & Francis
1 публикация, 0.54%
Optica Publishing Group
1 публикация, 0.54%
10
20
30
40
50
60
70
80
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
186
Поделиться
Цитировать
ГОСТ |
Цитировать
Lan X. et al. Quantum dot solids showing state-resolved band-like transport // Nature Materials. 2020. Vol. 19. No. 3. pp. 323-329.
ГОСТ со всеми авторами (до 50) Скопировать
Lan X., Chen M., Hudson M. H., Kamysbayev V., Wang Y., Guyot-Sionnest P., Talapin D. V. Quantum dot solids showing state-resolved band-like transport // Nature Materials. 2020. Vol. 19. No. 3. pp. 323-329.
RIS |
Цитировать
TY - JOUR
DO - 10.1038/s41563-019-0582-2
UR - https://doi.org/10.1038/s41563-019-0582-2
TI - Quantum dot solids showing state-resolved band-like transport
T2 - Nature Materials
AU - Lan, Xinzheng
AU - Chen, Meng-Lu
AU - Hudson, Margaret H
AU - Kamysbayev, Vladislav
AU - Wang, Yuanyuan
AU - Guyot-Sionnest, Philippe
AU - Talapin, Dmitri V.
PY - 2020
DA - 2020/01/27
PB - Springer Nature
SP - 323-329
IS - 3
VL - 19
PMID - 31988516
SN - 1476-1122
SN - 1476-4660
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2020_Lan,
author = {Xinzheng Lan and Meng-Lu Chen and Margaret H Hudson and Vladislav Kamysbayev and Yuanyuan Wang and Philippe Guyot-Sionnest and Dmitri V. Talapin},
title = {Quantum dot solids showing state-resolved band-like transport},
journal = {Nature Materials},
year = {2020},
volume = {19},
publisher = {Springer Nature},
month = {jan},
url = {https://doi.org/10.1038/s41563-019-0582-2},
number = {3},
pages = {323--329},
doi = {10.1038/s41563-019-0582-2}
}
MLA
Цитировать
Lan, Xinzheng, et al. “Quantum dot solids showing state-resolved band-like transport.” Nature Materials, vol. 19, no. 3, Jan. 2020, pp. 323-329. https://doi.org/10.1038/s41563-019-0582-2.