volume 14 issue 3 pages 229-241

Antiferromagnetic opto-spintronics

Publication typeJournal Article
Publication date2018-03-01
scimago Q1
wos Q1
SJR7.125
CiteScore29.1
Impact factor18.4
ISSN17452473, 17452481
General Physics and Astronomy
Abstract
Control and detection of spin order in ferromagnetic materials is the main principle enabling magnetic information to be stored and read in current technologies. Antiferromagnetic materials, on the other hand, are far less utilized, despite having some appealing features. For instance, the absence of net magnetization and stray fields eliminates crosstalk between neighbouring devices, and the absence of a primary macroscopic magnetization makes spin manipulation in antiferromagnets inherently faster than in ferromagnets. However, control of spins in antiferromagnets requires exceedingly high magnetic fields, and antiferromagnetic order cannot be detected with conventional magnetometry. Here we provide an overview and illustrative examples of how electromagnetic radiation can be used for probing and modification of the magnetic order in antiferromagnets. We also discuss possible research directions that are anticipated to be among the main topics defining the future of this rapidly developing field. An overview of how electromagnetic radiation can be used for probing and modification of the magnetic order in antiferromagnets, and possible future research directions.
Found 
Found 

Top-30

Journals

10
20
30
40
50
60
70
80
90
100
Physical Review B
99 publications, 20.58%
Physical Review Letters
34 publications, 7.07%
Nature Communications
26 publications, 5.41%
Applied Physics Letters
22 publications, 4.57%
Advanced Materials
13 publications, 2.7%
Physical Review Research
11 publications, 2.29%
Journal of Magnetism and Magnetic Materials
10 publications, 2.08%
Physical Review Materials
9 publications, 1.87%
Nano Letters
9 publications, 1.87%
Journal of Physics Condensed Matter
8 publications, 1.66%
Journal of Applied Physics
7 publications, 1.46%
Science advances
7 publications, 1.46%
APL Materials
6 publications, 1.25%
Advanced Functional Materials
6 publications, 1.25%
Advanced Science
6 publications, 1.25%
Nanoscale
6 publications, 1.25%
Physical Review Applied
5 publications, 1.04%
New Journal of Physics
5 publications, 1.04%
Journal of Physical Chemistry Letters
5 publications, 1.04%
Physical Review X
4 publications, 0.83%
Nature Materials
4 publications, 0.83%
Nature Physics
4 publications, 0.83%
Nature
4 publications, 0.83%
Nature Electronics
4 publications, 0.83%
npj Quantum Materials
4 publications, 0.83%
Scientific Reports
4 publications, 0.83%
Journal Physics D: Applied Physics
4 publications, 0.83%
ACS Nano
4 publications, 0.83%
Inorganic Chemistry
3 publications, 0.62%
10
20
30
40
50
60
70
80
90
100

Publishers

20
40
60
80
100
120
140
160
180
American Physical Society (APS)
165 publications, 34.3%
Springer Nature
75 publications, 15.59%
AIP Publishing
45 publications, 9.36%
Wiley
45 publications, 9.36%
American Chemical Society (ACS)
35 publications, 7.28%
Elsevier
35 publications, 7.28%
IOP Publishing
25 publications, 5.2%
Royal Society of Chemistry (RSC)
11 publications, 2.29%
American Association for the Advancement of Science (AAAS)
7 publications, 1.46%
MDPI
5 publications, 1.04%
Optica Publishing Group
5 publications, 1.04%
Physical Society of Japan
3 publications, 0.62%
Institute of Electrical and Electronics Engineers (IEEE)
3 publications, 0.62%
Walter de Gruyter
3 publications, 0.62%
Uspekhi Fizicheskikh Nauk Journal
2 publications, 0.42%
Pleiades Publishing
2 publications, 0.42%
Oxford University Press
2 publications, 0.42%
Stichting SciPost
2 publications, 0.42%
World Scientific
1 publication, 0.21%
Proceedings of the National Academy of Sciences (PNAS)
1 publication, 0.21%
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 publication, 0.21%
IntechOpen
1 publication, 0.21%
SPIE-Intl Soc Optical Eng
1 publication, 0.21%
Science in China Press
1 publication, 0.21%
20
40
60
80
100
120
140
160
180
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
481
Share
Cite this
GOST |
Cite this
GOST Copy
Němec P. et al. Antiferromagnetic opto-spintronics // Nature Physics. 2018. Vol. 14. No. 3. pp. 229-241.
GOST all authors (up to 50) Copy
Němec P., Fiebig M., Kampfrath T., Kimel A. V. Antiferromagnetic opto-spintronics // Nature Physics. 2018. Vol. 14. No. 3. pp. 229-241.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41567-018-0051-x
UR - https://doi.org/10.1038/s41567-018-0051-x
TI - Antiferromagnetic opto-spintronics
T2 - Nature Physics
AU - Němec, P.
AU - Fiebig, M
AU - Kampfrath, T.
AU - Kimel, A. V.
PY - 2018
DA - 2018/03/01
PB - Springer Nature
SP - 229-241
IS - 3
VL - 14
SN - 1745-2473
SN - 1745-2481
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2018_Němec,
author = {P. Němec and M Fiebig and T. Kampfrath and A. V. Kimel},
title = {Antiferromagnetic opto-spintronics},
journal = {Nature Physics},
year = {2018},
volume = {14},
publisher = {Springer Nature},
month = {mar},
url = {https://doi.org/10.1038/s41567-018-0051-x},
number = {3},
pages = {229--241},
doi = {10.1038/s41567-018-0051-x}
}
MLA
Cite this
MLA Copy
Němec, P., et al. “Antiferromagnetic opto-spintronics.” Nature Physics, vol. 14, no. 3, Mar. 2018, pp. 229-241. https://doi.org/10.1038/s41567-018-0051-x.