volume 16 issue 12 pages 1226-1232

ilastik: interactive machine learning for (bio)image analysis

Stuart Berg 1
Dominik Kutra 2, 3
Thorben Kroeger 2
Christoph N Straehle 2
Bernhard X. Kausler 2
Carsten Haubold 2
Martin Schiegg 2
Janez Ales 2
Thorsten Beier 2
Markus Rudy 2
Kemal Eren 2
Jaime I. Cervantes 2
Buote Xu 2
Fynn Beuttenmueller 2, 3
Adrian Wolny 2
Chong Zhang 2
Ullrich Koethe 2
Fred A. Hamprecht 2
Anna Kreshuk 2, 3
Publication typeJournal Article
Publication date2019-09-30
scimago Q1
wos Q1
SJR17.251
CiteScore49.0
Impact factor32.1
ISSN15487091, 15487105
Biochemistry
Molecular Biology
Cell Biology
Biotechnology
Abstract
We present ilastik, an easy-to-use interactive tool that brings machine-learning-based (bio)image analysis to end users without substantial computational expertise. It contains pre-defined workflows for image segmentation, object classification, counting and tracking. Users adapt the workflows to the problem at hand by interactively providing sparse training annotations for a nonlinear classifier. ilastik can process data in up to five dimensions (3D, time and number of channels). Its computational back end runs operations on-demand wherever possible, allowing for interactive prediction on data larger than RAM. Once the classifiers are trained, ilastik workflows can be applied to new data from the command line without further user interaction. We describe all ilastik workflows in detail, including three case studies and a discussion on the expected performance. ilastik is an user-friendly interactive tool for machine-learning-based image segmentation, object classification, counting and tracking.
Found 
Found 

Top-30

Journals

20
40
60
80
100
120
Nature Communications
106 publications, 3.57%
bioRxiv
90 publications, 3.03%
Scientific Reports
60 publications, 2.02%
eLife
56 publications, 1.88%
Cell Reports
34 publications, 1.14%
Communications Biology
28 publications, 0.94%
iScience
28 publications, 0.94%
Cell
27 publications, 0.91%
Nature Methods
26 publications, 0.87%
Science advances
26 publications, 0.87%
Methods in Molecular Biology
25 publications, 0.84%
Nature
22 publications, 0.74%
Proceedings of the National Academy of Sciences of the United States of America
22 publications, 0.74%
International Journal of Molecular Sciences
21 publications, 0.71%
Developmental Cell
21 publications, 0.71%
Journal of Cell Science
19 publications, 0.64%
PLoS ONE
19 publications, 0.64%
Science
18 publications, 0.61%
Cells
16 publications, 0.54%
Nature Cell Biology
15 publications, 0.5%
PLoS Biology
15 publications, 0.5%
Frontiers in Cell and Developmental Biology
14 publications, 0.47%
Advanced Science
14 publications, 0.47%
Journal of Cell Biology
13 publications, 0.44%
Development (Cambridge)
13 publications, 0.44%
PLoS Computational Biology
13 publications, 0.44%
Current Biology
13 publications, 0.44%
Journal of Microscopy
13 publications, 0.44%
Lecture Notes in Computer Science
13 publications, 0.44%
20
40
60
80
100
120

Publishers

100
200
300
400
500
600
700
Cold Spring Harbor Laboratory
697 publications, 23.45%
Springer Nature
576 publications, 19.38%
Elsevier
546 publications, 18.37%
Wiley
181 publications, 6.09%
MDPI
122 publications, 4.1%
Frontiers Media S.A.
108 publications, 3.63%
Oxford University Press
71 publications, 2.39%
Public Library of Science (PLoS)
59 publications, 1.99%
American Association for the Advancement of Science (AAAS)
56 publications, 1.88%
eLife Sciences Publications
56 publications, 1.88%
American Chemical Society (ACS)
52 publications, 1.75%
Institute of Electrical and Electronics Engineers (IEEE)
39 publications, 1.31%
The Company of Biologists
34 publications, 1.14%
Royal Society of Chemistry (RSC)
25 publications, 0.84%
Proceedings of the National Academy of Sciences (PNAS)
22 publications, 0.74%
Rockefeller University Press
19 publications, 0.64%
Taylor & Francis
15 publications, 0.5%
SAGE
13 publications, 0.44%
F1000 Research
12 publications, 0.4%
American Society for Cell Biology (ASCB)
12 publications, 0.4%
AIP Publishing
11 publications, 0.37%
Ovid Technologies (Wolters Kluwer Health)
11 publications, 0.37%
American Association for Cancer Research (AACR)
11 publications, 0.37%
American Geophysical Union
11 publications, 0.37%
European Molecular Biology Organization
10 publications, 0.34%
American Society for Microbiology
10 publications, 0.34%
SPIE-Intl Soc Optical Eng
10 publications, 0.34%
Association for Computing Machinery (ACM)
9 publications, 0.3%
Society for Neuroscience
9 publications, 0.3%
100
200
300
400
500
600
700
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
3k
Share
Cite this
GOST |
Cite this
GOST Copy
Berg S. et al. ilastik: interactive machine learning for (bio)image analysis // Nature Methods. 2019. Vol. 16. No. 12. pp. 1226-1232.
GOST all authors (up to 50) Copy
Berg S., Kutra D., Kroeger T., Straehle C. N., Kausler B. X., Haubold C., Schiegg M., Ales J., Beier T., Rudy M., Eren K., Cervantes J. I., Xu B., Beuttenmueller F., Wolny A., Zhang C., Koethe U., Hamprecht F. A., Kreshuk A. ilastik: interactive machine learning for (bio)image analysis // Nature Methods. 2019. Vol. 16. No. 12. pp. 1226-1232.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1038/s41592-019-0582-9
UR - https://doi.org/10.1038/s41592-019-0582-9
TI - ilastik: interactive machine learning for (bio)image analysis
T2 - Nature Methods
AU - Berg, Stuart
AU - Kutra, Dominik
AU - Kroeger, Thorben
AU - Straehle, Christoph N
AU - Kausler, Bernhard X.
AU - Haubold, Carsten
AU - Schiegg, Martin
AU - Ales, Janez
AU - Beier, Thorsten
AU - Rudy, Markus
AU - Eren, Kemal
AU - Cervantes, Jaime I.
AU - Xu, Buote
AU - Beuttenmueller, Fynn
AU - Wolny, Adrian
AU - Zhang, Chong
AU - Koethe, Ullrich
AU - Hamprecht, Fred A.
AU - Kreshuk, Anna
PY - 2019
DA - 2019/09/30
PB - Springer Nature
SP - 1226-1232
IS - 12
VL - 16
PMID - 31570887
SN - 1548-7091
SN - 1548-7105
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2019_Berg,
author = {Stuart Berg and Dominik Kutra and Thorben Kroeger and Christoph N Straehle and Bernhard X. Kausler and Carsten Haubold and Martin Schiegg and Janez Ales and Thorsten Beier and Markus Rudy and Kemal Eren and Jaime I. Cervantes and Buote Xu and Fynn Beuttenmueller and Adrian Wolny and Chong Zhang and Ullrich Koethe and Fred A. Hamprecht and Anna Kreshuk},
title = {ilastik: interactive machine learning for (bio)image analysis},
journal = {Nature Methods},
year = {2019},
volume = {16},
publisher = {Springer Nature},
month = {sep},
url = {https://doi.org/10.1038/s41592-019-0582-9},
number = {12},
pages = {1226--1232},
doi = {10.1038/s41592-019-0582-9}
}
MLA
Cite this
MLA Copy
Berg, Stuart, et al. “ilastik: interactive machine learning for (bio)image analysis.” Nature Methods, vol. 16, no. 12, Sep. 2019, pp. 1226-1232. https://doi.org/10.1038/s41592-019-0582-9.