Deep learning-assisted analysis of single-particle tracking for automated correlation between diffusion and function
Jacob Kæstel-Hansen
1, 2, 3, 4
,
Marilina de Sautu
5, 6
,
Anand Saminathan
7, 8, 9
,
Gustavo Scanavachi
7, 8, 9
,
Ricardo F. Bango Da Cunha Correia
7, 8, 9
,
Annette Juma Nielsen
1, 2, 3, 4
,
Sara Vogt Bleshøy
1, 2, 3, 4
,
Konstantinos Tsolakidis
1, 2, 3, 4
,
W Boomsma
10
,
Tom Kirchhausen
3, 7, 8, 9
,
Nikos S. Hatzakis
1, 2, 3, 4
3
4
5
Тип публикации: Journal Article
Дата публикации: 2025-05-08
scimago Q1
wos Q1
БС1
SJR: 17.251
CiteScore: 49.0
Impact factor: 32.1
ISSN: 15487091, 15487105
Краткое описание
Subcellular diffusion in living systems reflects cellular processes and interactions. Recent advances in optical microscopy allow the tracking of this nanoscale diffusion of individual objects with unprecedented precision. However, the agnostic and automated extraction of functional information from the diffusion of molecules and organelles within the subcellular environment is labor intensive and poses a significant challenge. Here we introduce DeepSPT, a deep learning framework integrated in an analysis software, to interpret the diffusional two- or three-dimensional temporal behavior of objects in a rapid and efficient manner, agnostically. Demonstrating its versatility, we have applied DeepSPT to automated mapping of the early events of viral infections, identifying endosomal organelles, clathrin-coated pits and vesicles among others with F1 scores of 81%, 82% and 95%, respectively, and within seconds instead of weeks. The fact that DeepSPT effectively extracts biological information from diffusion alone illustrates that besides structure, motion encodes function at the molecular and subcellular level. DeepSPT is a deep learning framework for the automated temporal analysis of behavior in 2D and 3D single-particle tracking. After extensive validation, DeepSPT was shown to work on diverse subcellular tracking, mapping and classification applications.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
13
Всего цитирований:
13
Цитирований c 0:
0
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Kæstel-Hansen J. et al. Deep learning-assisted analysis of single-particle tracking for automated correlation between diffusion and function // Nature Methods. 2025. Vol. 22. No. 5. pp. 1091-1100.
ГОСТ со всеми авторами (до 50)
Скопировать
Kæstel-Hansen J., de Sautu M., Saminathan A., Scanavachi G., Bango Da Cunha Correia R. F., Nielsen A. J., Bleshøy S. V., Tsolakidis K., Boomsma W., Kirchhausen T., Hatzakis N. S. Deep learning-assisted analysis of single-particle tracking for automated correlation between diffusion and function // Nature Methods. 2025. Vol. 22. No. 5. pp. 1091-1100.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1038/s41592-025-02665-8
UR - https://www.nature.com/articles/s41592-025-02665-8
TI - Deep learning-assisted analysis of single-particle tracking for automated correlation between diffusion and function
T2 - Nature Methods
AU - Kæstel-Hansen, Jacob
AU - de Sautu, Marilina
AU - Saminathan, Anand
AU - Scanavachi, Gustavo
AU - Bango Da Cunha Correia, Ricardo F.
AU - Nielsen, Annette Juma
AU - Bleshøy, Sara Vogt
AU - Tsolakidis, Konstantinos
AU - Boomsma, W
AU - Kirchhausen, Tom
AU - Hatzakis, Nikos S.
PY - 2025
DA - 2025/05/08
PB - Springer Nature
SP - 1091-1100
IS - 5
VL - 22
SN - 1548-7091
SN - 1548-7105
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2025_Kæstel-Hansen,
author = {Jacob Kæstel-Hansen and Marilina de Sautu and Anand Saminathan and Gustavo Scanavachi and Ricardo F. Bango Da Cunha Correia and Annette Juma Nielsen and Sara Vogt Bleshøy and Konstantinos Tsolakidis and W Boomsma and Tom Kirchhausen and Nikos S. Hatzakis},
title = {Deep learning-assisted analysis of single-particle tracking for automated correlation between diffusion and function},
journal = {Nature Methods},
year = {2025},
volume = {22},
publisher = {Springer Nature},
month = {may},
url = {https://www.nature.com/articles/s41592-025-02665-8},
number = {5},
pages = {1091--1100},
doi = {10.1038/s41592-025-02665-8}
}
Цитировать
MLA
Скопировать
Kæstel-Hansen, Jacob, et al. “Deep learning-assisted analysis of single-particle tracking for automated correlation between diffusion and function.” Nature Methods, vol. 22, no. 5, May. 2025, pp. 1091-1100. https://www.nature.com/articles/s41592-025-02665-8.