Open Access
Scientific Reports, volume 10, issue 1, publication number 10807
Solid-state synthesis, magnetic and structural properties of interfacial B2-FeRh(001) layers in Rh/Fe(001) films
V G Myagkov
1
,
A. A. Ivanenko
1
,
L.E. Bykova
1
,
V S Zhigalov
1
,
M N Volochaev
1
,
D A Velikanov
1
,
A A Matsynin
1
,
G.N. Bondarenko
2
1
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Krasnoyarsk, Russian Federation
|
2
Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences (SB RAS), Krasnoyarsk, Russian Federation
|
Publication type: Journal Article
Publication date: 2020-07-02
Multidisciplinary
Abstract
Here we first report results of the start of the solid-state reaction at the Rh/Fe(001) interface and the structural and magnetic phase transformations in 52Rh/48Fe(001), 45Rh/55Fe(001), 68Rh/32Fe(001) bilayers from room temperature to 800 °C. For all bilayers the non-magnetic nanocrystalline phase with a B2 structure (nfm-B2) is the first phase that is formed on the Rh/Fe(001) interface near 100 °C. Above 300 °C, without changing the nanocrystalline B2 structure, the phase grows into the low-magnetization modification αlʹ (MSl ~ 825 emu/cm3) of the ferromagnetic αʹ phase which has a reversible αlʹ ↔ αʺ transition. After annealing 52Rh/48Fe(001) bilayers above 600 °C the αlʹ phase increases in grain size and either develops into αhʹ with high magnetization (MSh ~ 1,220 emu/cm3) or remains in the αlʹ phase. In contrast to αlʹ, the αhʹ ↔ αʺ transition in the αhʹ films is completely suppressed. When the annealing temperature of the 45Rh/55Fe(001) samples is increased from 450 to 800 °C the low-magnetization nanocrystalline αlʹ films develop into high crystalline perfection epitaxial αhʹ(001) layers, which have a high magnetization of ~ 1,275 emu/cm3. αhʹ(001) films do not undergo a transition to an antiferromagnetic αʺ phase. In 68Rh/32Fe(001) samples above 500 °C non-magnetic epitaxial γ(001) layers grow on the Fe(001) interface as a result of the solid-state reaction between the epitaxial αlʹ(001) and polycrystalline Rh films. Our results demonstrate not only the complex nature of chemical interactions at the low-temperature synthesis of the nfm-B2 and αlʹ phases in Rh/Fe(001) bilayers, but also establish their continuous link with chemical mechanisms underlying reversible αlʹ ↔ αʺ transitions.
Found
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.