Open Access
Scanning vortex microscopy reveals thickness-dependent pinning nano-network in superconducting niobium films
Razmik A Hovhannisyan
1
,
Andrey G. Shishkin
1, 2, 3
,
Artem K Grebenko
1
,
Nadezhda E Kupchinskaya
1
,
O.V. Skryabina
1, 4
,
Alexey Yu. Aladyshkin
1, 5, 6
,
Vyacheslav V Dremov
1
,
Alexey V Samokhvalov
5, 6
,
Alexander S. Mel'nikov
1, 5, 6
,
Dimitri Roditchev
7
,
V. S. Stolyarov
1, 2, 3, 7
Publication type: Journal Article
Publication date: 2025-03-04
scimago Q1
wos Q1
SJR: 2.365
CiteScore: 10.1
Impact factor: 9.6
ISSN: 26624443
Abstract
The presence of quantum vortices determines the electromagnetic response of superconducting materials and devices. Controlling the motion of vortices and their pinning on intrinsic and artificial defects is therefore essential for further development of superconducting electronics. Here we take advantage of the attractive force between a magnetic tip of the Magnetic Force Microscope and a single quantum vortex to spatially map the pinning force inside 50–240 nm thick magnetron-sputtered niobium films, widely used in various applications. The revealed pinning nanonetwork is related to the thickness-dependent granular structure of the films as well as to the characteristic microscopic scales of superconductivity. Our approach is general and can be directly applied to other type-II granular superconducting materials and nanodevices. Controlling the motion and pinning of vortices is essential for developing superconducting electronics. Here, the authors reveal the vortex pinning nano-network in thin superconducting niobium films by developing a scanning quantum vortex microscopy approach.
Found
Nothing found, try to update filter.
Found
Nothing found, try to update filter.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
4
Total citations:
4
Citations from 0:
0
Cite this
GOST |
RIS |
BibTex
Cite this
GOST
Copy
Hovhannisyan R. A. et al. Scanning vortex microscopy reveals thickness-dependent pinning nano-network in superconducting niobium films // Communications Materials. 2025. Vol. 6. No. 1. 42
GOST all authors (up to 50)
Copy
Hovhannisyan R. A., Grebenchuk S., Larionov S. A., Shishkin A. G., Grebenko A. K., Kupchinskaya N. E., Dobrovolskaya E. A., Skryabina O., Aladyshkin A. Y., Dremov V. V., Golovchanskiy I., Samokhvalov A. V., Mel'nikov A. S., Roditchev D., Stolyarov V. S. Scanning vortex microscopy reveals thickness-dependent pinning nano-network in superconducting niobium films // Communications Materials. 2025. Vol. 6. No. 1. 42
Cite this
RIS
Copy
TY - JOUR
DO - 10.1038/s43246-025-00759-6
UR - https://www.nature.com/articles/s43246-025-00759-6
TI - Scanning vortex microscopy reveals thickness-dependent pinning nano-network in superconducting niobium films
T2 - Communications Materials
AU - Hovhannisyan, Razmik A
AU - Grebenchuk, Sergey
AU - Larionov, Semen A.
AU - Shishkin, Andrey G.
AU - Grebenko, Artem K
AU - Kupchinskaya, Nadezhda E
AU - Dobrovolskaya, Ekaterina A.
AU - Skryabina, O.V.
AU - Aladyshkin, Alexey Yu.
AU - Dremov, Vyacheslav V
AU - Golovchanskiy, I.A.
AU - Samokhvalov, Alexey V
AU - Mel'nikov, Alexander S.
AU - Roditchev, Dimitri
AU - Stolyarov, V. S.
PY - 2025
DA - 2025/03/04
PB - Springer Nature
IS - 1
VL - 6
SN - 2662-4443
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2025_Hovhannisyan,
author = {Razmik A Hovhannisyan and Sergey Grebenchuk and Semen A. Larionov and Andrey G. Shishkin and Artem K Grebenko and Nadezhda E Kupchinskaya and Ekaterina A. Dobrovolskaya and O.V. Skryabina and Alexey Yu. Aladyshkin and Vyacheslav V Dremov and I.A. Golovchanskiy and Alexey V Samokhvalov and Alexander S. Mel'nikov and Dimitri Roditchev and V. S. Stolyarov},
title = {Scanning vortex microscopy reveals thickness-dependent pinning nano-network in superconducting niobium films},
journal = {Communications Materials},
year = {2025},
volume = {6},
publisher = {Springer Nature},
month = {mar},
url = {https://www.nature.com/articles/s43246-025-00759-6},
number = {1},
pages = {42},
doi = {10.1038/s43246-025-00759-6}
}