Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity
Yue Wang
1, 2, 3, 4, 5, 6, 7
,
Yujing Wu
1, 2, 3, 4, 6, 7
,
ZHIXUAN WANG
1, 2, 3, 4, 6, 7
,
Liquan Chen
1, 2, 3, 4, 6, 7
,
Hong Li
1, 2, 3, 4, 5, 6, 7
,
Fan Wu
1, 2, 3, 4, 5, 6, 7
1
Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, Jiangsu, China
|
2
Yangtze River Delta Physics Research Center, Liyang 213300, Jiangsu, China
|
Тип публикации: Journal Article
Дата публикации: 2022-02-03
scimago Q1
wos Q1
БС1
SJR: 2.462
CiteScore: 16.7
Impact factor: 9.5
ISSN: 20507488, 20507496, 09599428, 13645501
General Chemistry
General Materials Science
Renewable Energy, Sustainability and the Environment
Краткое описание
Ionic conductivity is a critical parameter required for superionic conductors to be successfully applied as solid electrolytes in all-solid-state batteries. Various methods have been developed to improve the ionic conductivity of solid electrolytes by researchers worldwide. Herein, the research progress achieved by Kilner's group in improving the ionic conductivity of garnet-type solid electrolytes is summarized, focusing on the effects and the underlying mechanism of the doping strategies. Moreover, the characterization methodologies for ion diffusion are discussed in detail, where a 6Li:7Li isotope couple is employed for inter-diffusion and the corresponding isotopic profiles are tested, followed by tracer experiments to directly measure the diffusion coefficient. Inspired by this work, we extend similar strategies to argyrodite sulfide SE (Li6PS5I) to greatly improve its ionic conductivity. This work can therefore serve as a handy tool for improving ionic conductivity in both oxide and sulfide solid electrolytes, providing an in-depth understanding of the underlying lithium diffusion mechanism and improving the methodology.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
2
4
6
8
10
|
|
|
Energy Storage Materials
10 публикаций, 7.14%
|
|
|
Chemical Engineering Journal
10 публикаций, 7.14%
|
|
|
Advanced Energy Materials
8 публикаций, 5.71%
|
|
|
Journal of Materials Chemistry A
6 публикаций, 4.29%
|
|
|
Electrochimica Acta
5 публикаций, 3.57%
|
|
|
Small
4 публикации, 2.86%
|
|
|
ACS Nano
4 публикации, 2.86%
|
|
|
Advanced Functional Materials
4 публикации, 2.86%
|
|
|
ACS applied materials & interfaces
4 публикации, 2.86%
|
|
|
Nano Energy
3 публикации, 2.14%
|
|
|
ChemSusChem
3 публикации, 2.14%
|
|
|
Journal of Alloys and Compounds
3 публикации, 2.14%
|
|
|
Applied Physics Letters
2 публикации, 1.43%
|
|
|
Electrochemical Energy Reviews
2 публикации, 1.43%
|
|
|
Ceramics International
2 публикации, 1.43%
|
|
|
Nature Communications
2 публикации, 1.43%
|
|
|
Nano Letters
2 публикации, 1.43%
|
|
|
Advanced Materials
2 публикации, 1.43%
|
|
|
Materials
2 публикации, 1.43%
|
|
|
Solid State Ionics
2 публикации, 1.43%
|
|
|
Chinese Chemical Letters
2 публикации, 1.43%
|
|
|
Journal of Power Sources
2 публикации, 1.43%
|
|
|
Chemical Society Reviews
2 публикации, 1.43%
|
|
|
Materials Horizons
2 публикации, 1.43%
|
|
|
Journal of Energy Chemistry
2 публикации, 1.43%
|
|
|
Advances in Applied Ceramics
1 публикация, 0.71%
|
|
|
Sustainability
1 публикация, 0.71%
|
|
|
Nature
1 публикация, 0.71%
|
|
|
Small Science
1 публикация, 0.71%
|
|
|
Journal of Membrane Science
1 публикация, 0.71%
|
|
|
2
4
6
8
10
|
Издатели
|
10
20
30
40
50
60
|
|
|
Elsevier
57 публикаций, 40.71%
|
|
|
Wiley
33 публикации, 23.57%
|
|
|
American Chemical Society (ACS)
15 публикаций, 10.71%
|
|
|
Royal Society of Chemistry (RSC)
15 публикаций, 10.71%
|
|
|
Springer Nature
7 публикаций, 5%
|
|
|
MDPI
5 публикаций, 3.57%
|
|
|
AIP Publishing
2 публикации, 1.43%
|
|
|
SAGE
1 публикация, 0.71%
|
|
|
American Association for the Advancement of Science (AAAS)
1 публикация, 0.71%
|
|
|
IOP Publishing
1 публикация, 0.71%
|
|
|
American Physical Society (APS)
1 публикация, 0.71%
|
|
|
OAE Publishing Inc.
1 публикация, 0.71%
|
|
|
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 публикация, 0.71%
|
|
|
10
20
30
40
50
60
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
140
Всего цитирований:
140
Цитирований c 2024:
74
(52.86%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Wang Y. et al. Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity // Journal of Materials Chemistry A. 2022. Vol. 10. No. 9. pp. 4517-4532.
ГОСТ со всеми авторами (до 50)
Скопировать
Wang Y., Wu Y., WANG Z., Chen L., Li H., Wu F. Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity // Journal of Materials Chemistry A. 2022. Vol. 10. No. 9. pp. 4517-4532.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1039/d1ta10966a
UR - https://xlink.rsc.org/?DOI=D1TA10966A
TI - Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity
T2 - Journal of Materials Chemistry A
AU - Wang, Yue
AU - Wu, Yujing
AU - WANG, ZHIXUAN
AU - Chen, Liquan
AU - Li, Hong
AU - Wu, Fan
PY - 2022
DA - 2022/02/03
PB - Royal Society of Chemistry (RSC)
SP - 4517-4532
IS - 9
VL - 10
SN - 2050-7488
SN - 2050-7496
SN - 0959-9428
SN - 1364-5501
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2022_Wang,
author = {Yue Wang and Yujing Wu and ZHIXUAN WANG and Liquan Chen and Hong Li and Fan Wu},
title = {Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity},
journal = {Journal of Materials Chemistry A},
year = {2022},
volume = {10},
publisher = {Royal Society of Chemistry (RSC)},
month = {feb},
url = {https://xlink.rsc.org/?DOI=D1TA10966A},
number = {9},
pages = {4517--4532},
doi = {10.1039/d1ta10966a}
}
Цитировать
MLA
Скопировать
Wang, Yue, et al. “Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity.” Journal of Materials Chemistry A, vol. 10, no. 9, Feb. 2022, pp. 4517-4532. https://xlink.rsc.org/?DOI=D1TA10966A.