Open Access
Open access
Energy and Environmental Science, volume 9, issue 4, pages 1130-1143

Colloidal quantum dot ligand engineering for high performance solar cells

Publication typeJournal Article
Publication date2016-03-10
scimago Q1
SJR10.935
CiteScore50.5
Impact factor32.4
ISSN17545692, 17545706
Environmental Chemistry
Pollution
Nuclear Energy and Engineering
Renewable Energy, Sustainability and the Environment
Abstract
Colloidal quantum dots (CQDs) are fast-improving materials for next-generation solution-processed optoelectronic devices such as solar cells, photocatalysis, light emitting diodes, and photodetectors. Nanoscale CQDs exhibit a high surface to volume ratio, and a significant fraction of atoms making up the quantum dots are thus located on the surface. CQD surface states therefore play a critical role in determining these materials' properties, influencing luminescence, defect energy levels, and doping type and density. In the past five years, halide ligands were applied to CQD solar cells, and these not only improved charge carrier mobility, but also reduced defects on the surface. With the inclusion of halide ligands, CQD solar cell certified power conversion efficiencies have increased rapidly from an initial 5% in 2010 to the latest certified values over 10%. In this perspective article, we summarize recent advances in ligand engineering that improve the performance of CQD solar cells, focusing on the use of halide inorganic ligands to improve CQD surface passivation and film conductivity simultaneously.
Found 
Found 

Top-30

Journals

5
10
15
20
5
10
15
20

Publishers

10
20
30
40
50
60
70
80
10
20
30
40
50
60
70
80
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?