том 22 издание 28 страницы 15805-15830

The one-electron self-interaction error in 74 density functional approximations: a case study on hydrogenic mono- and dinuclear systems

Тип публикацииJournal Article
Дата публикации2020-05-04
scimago Q2
wos Q2
БС2
SJR0.698
CiteScore5.3
Impact factor2.9
ISSN14639076, 14639084
Physical and Theoretical Chemistry
General Physics and Astronomy
Краткое описание
The self-interaction error (SIE), i.e. unphysical interactions of electrons with themselves, has plagued developers and users of Density Functional Approximations (DFAs) since the inception of Density Functional Theory (DFT). Formally, it can be separated into the one-electron and many-electron SIE; herein we present one of the most comprehensive studies of the first. While we focus mostly on the total SIE, we also make use of two different decompositions. The first is a separation into functional and density-driven errors as championed by Sim, Burke and co-workers [J. Phys. Chem. Lett., 2018, 9, 6385–6392]; the second separates the error into exchange, correlation, and one-electron components, with the latter being a density error that has not been discussed in this form before. After investigating the familiar hydrogen atom and dihydrogen cation, we establish a relationship between the SIE and the nuclear charge with the help of a series of heavier hydrogenic analogues. For the mononuclear systems and the diatomics at the dissociation limit, this relationship is linear in nature with prominent exceptions, mostly belonging to the Minnesota and range-separated (double-)hybrid DFAs. For the first time, we also show how the magnitude of the SIE depends on the underlying atomic-orbital basis set and how DFAs that rely on a popular van-der-Waals DFT type London-dispersion term exhibit “self-dispersion”. We find that range separation is not a panacea for solving the one-electron SIE. DFAs that have been developed to be one-electron SIE free for one system, such as the hydrogen atom, show larger errors for heavier hydrogenic systems. Often, one-electron SIE-free DFAs rely on fortuitous error cancellation between their exchange and correlation components. An analysis of the most robust methods for general applications to date reveals that they suffer moderately from the one-electron SIE, while DFAs that are nearly SIE-free do not perform well in applications. Implicit in the continued existence of the one-electron SIE is that well-performing DFAs continue to suffer insufficiencies at their fundamental levels that are being compensated for by the SIE. Our analysis includes more than 250 000 datapoints, resulting in multiple insights that may drive future developments of new DFAs or SIE corrections.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
6
7
8
Journal of Chemical Physics
8 публикаций, 22.22%
Journal of Chemical Theory and Computation
6 публикаций, 16.67%
Physical Chemistry Chemical Physics
4 публикации, 11.11%
Journal of Physical Chemistry Letters
3 публикации, 8.33%
Chemical Science
2 публикации, 5.56%
Journal of Physical Chemistry A
1 публикация, 2.78%
Electronic Structure
1 публикация, 2.78%
Journal of Computational Chemistry
1 публикация, 2.78%
Wiley Interdisciplinary Reviews: Computational Molecular Science
1 публикация, 2.78%
Inorganic Chemistry
1 публикация, 2.78%
Chemistry - A European Journal
1 публикация, 2.78%
Annual Reports in Computational Chemistry
1 публикация, 2.78%
Advanced Electronic Materials
1 публикация, 2.78%
Europhysics Letters
1 публикация, 2.78%
International Journal of Modern Physics B
1 публикация, 2.78%
Physica B: Condensed Matter
1 публикация, 2.78%
Nanoscale Advances
1 публикация, 2.78%
Journal of Physics Materials
1 публикация, 2.78%
1
2
3
4
5
6
7
8

Издатели

2
4
6
8
10
12
American Chemical Society (ACS)
11 публикаций, 30.56%
AIP Publishing
8 публикаций, 22.22%
Royal Society of Chemistry (RSC)
7 публикаций, 19.44%
Wiley
4 публикации, 11.11%
IOP Publishing
3 публикации, 8.33%
Elsevier
2 публикации, 5.56%
World Scientific
1 публикация, 2.78%
2
4
6
8
10
12
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
36
Поделиться
Цитировать
ГОСТ |
Цитировать
Lonsdale D. R. et al. The one-electron self-interaction error in 74 density functional approximations: a case study on hydrogenic mono- and dinuclear systems // Physical Chemistry Chemical Physics. 2020. Vol. 22. No. 28. pp. 15805-15830.
ГОСТ со всеми авторами (до 50) Скопировать
Lonsdale D. R., Goerigk L. The one-electron self-interaction error in 74 density functional approximations: a case study on hydrogenic mono- and dinuclear systems // Physical Chemistry Chemical Physics. 2020. Vol. 22. No. 28. pp. 15805-15830.
RIS |
Цитировать
TY - JOUR
DO - 10.1039/D0CP01275K
UR - https://xlink.rsc.org/?DOI=D0CP01275K
TI - The one-electron self-interaction error in 74 density functional approximations: a case study on hydrogenic mono- and dinuclear systems
T2 - Physical Chemistry Chemical Physics
AU - Lonsdale, Dale R
AU - Goerigk, Lars
PY - 2020
DA - 2020/05/04
PB - Royal Society of Chemistry (RSC)
SP - 15805-15830
IS - 28
VL - 22
PMID - 32458849
SN - 1463-9076
SN - 1463-9084
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2020_Lonsdale,
author = {Dale R Lonsdale and Lars Goerigk},
title = {The one-electron self-interaction error in 74 density functional approximations: a case study on hydrogenic mono- and dinuclear systems},
journal = {Physical Chemistry Chemical Physics},
year = {2020},
volume = {22},
publisher = {Royal Society of Chemistry (RSC)},
month = {may},
url = {https://xlink.rsc.org/?DOI=D0CP01275K},
number = {28},
pages = {15805--15830},
doi = {10.1039/D0CP01275K}
}
MLA
Цитировать
Lonsdale, Dale R., et al. “The one-electron self-interaction error in 74 density functional approximations: a case study on hydrogenic mono- and dinuclear systems.” Physical Chemistry Chemical Physics, vol. 22, no. 28, May. 2020, pp. 15805-15830. https://xlink.rsc.org/?DOI=D0CP01275K.