volume 7 issue 23 pages 13968-13977

NMR studies of Li mobility in NASICON-type glass-ceramic ionic conductors with optimized microstructure

Anastasia Vyalikh 1, 2, 3, 4, 5
Marc Schikora 5, 6, 7, 8, 9
Kaspar P Seipel 5, 6, 7, 8, 9
Max Weigler 5, 6, 7, 8, 9
Matthias Zschornak 1, 2, 3, 4, 5
Falk Meutzner 1, 2, 3, 4, 5
Wolfram Münchgesang 1, 2, 3, 4, 5
Tina Nestler 1
Viktor Vizgalov 10, 11, 12, 13
Daniil Itkis 10, 11, 12, 13
A.F. Privalov 6
Alexei F Privalov 5, 7, 8, 9
Michael Vogel 6
Dirk C. Meyer 1, 2, 3, 4, 5
Publication typeJournal Article
Publication date2019-04-01
scimago Q1
wos Q1
SJR2.462
CiteScore16.7
Impact factor9.5
ISSN20507488, 20507496, 09599428, 13645501
General Chemistry
General Materials Science
Renewable Energy, Sustainability and the Environment
Abstract
Electrical conductivity in solid ionic conductors can be enhanced by faster ionic mobility resulting from optimizing the conducting pathways, increase of charge carrier concentration or improvement of crystallite interconnectivity. Here, we investigated the lithium ion mobility in two NASICON-type glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3 (LAGP) composition, prepared with and without adding Y2O3 (5 vol%) to the glass melt before crystallization. We applied variable-temperature 7Li nuclear magnetic resonance (NMR) spectroscopy, T1 relaxation time and self-diffusion measurements as well as impedance spectroscopy to study ionic dynamics. For both materials an Arrhenius behavior of ionic mobility is obtained from various experimental approaches, thus showing a single thermally activated process in a wide temperature range with very similar activation energies of about 0.3 eV for yttrium-free and yttrium-modified LAGP ceramics. A near five-fold conductivity enhancement in the yttrium-modified sample cannot be explained by faster ionic dynamics because only minor changes of ionic mobility are registered by NMR. In conjunction with the theoretical calculations of NMR parameters and bond valence site energies, this observation suggests that the most influencing factors on ionic conductivity are an intergrain connectivity and an Li concentration enhancement, offering thus an efficient strategy for improved ionic conductors.
Found 
Found 

Top-30

Journals

1
2
3
Journal of Physical Chemistry C
3 publications, 10.34%
Solid State Ionics
3 publications, 10.34%
Journal of the Electrochemical Society
1 publication, 3.45%
International Journal of Molecular Sciences
1 publication, 3.45%
Nanomaterials
1 publication, 3.45%
Analytical Sciences
1 publication, 3.45%
Materials Today Energy
1 publication, 3.45%
Acta Materialia
1 publication, 3.45%
Journal of Membrane Science
1 publication, 3.45%
Journal of the European Ceramic Society
1 publication, 3.45%
Energy Storage Materials
1 publication, 3.45%
Journal of Materials Chemistry C
1 publication, 3.45%
Materials Advances
1 publication, 3.45%
Annual Reports on NMR Spectroscopy
1 publication, 3.45%
Zeitschrift fur Physikalische Chemie
1 publication, 3.45%
Annual Review of Materials Research
1 publication, 3.45%
Heliyon
1 publication, 3.45%
Materials Today Communications
1 publication, 3.45%
ACS applied materials & interfaces
1 publication, 3.45%
Journal of Materials Chemistry A
1 publication, 3.45%
Nano Energy
1 publication, 3.45%
Ionics
1 publication, 3.45%
Ceramics International
1 publication, 3.45%
Advanced Materials
1 publication, 3.45%
1
2
3

Publishers

2
4
6
8
10
12
14
Elsevier
13 publications, 44.83%
American Chemical Society (ACS)
4 publications, 13.79%
Royal Society of Chemistry (RSC)
3 publications, 10.34%
MDPI
2 publications, 6.9%
Springer Nature
2 publications, 6.9%
The Electrochemical Society
1 publication, 3.45%
Japan Society for Analytical Chemistry
1 publication, 3.45%
Walter de Gruyter
1 publication, 3.45%
Annual Reviews
1 publication, 3.45%
Wiley
1 publication, 3.45%
2
4
6
8
10
12
14
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
29
Share
Cite this
GOST |
Cite this
GOST Copy
Vyalikh A. et al. NMR studies of Li mobility in NASICON-type glass-ceramic ionic conductors with optimized microstructure // Journal of Materials Chemistry A. 2019. Vol. 7. No. 23. pp. 13968-13977.
GOST all authors (up to 50) Copy
Vyalikh A. et al. NMR studies of Li mobility in NASICON-type glass-ceramic ionic conductors with optimized microstructure // Journal of Materials Chemistry A. 2019. Vol. 7. No. 23. pp. 13968-13977.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1039/c8ta11686e
UR - https://xlink.rsc.org/?DOI=C8TA11686E
TI - NMR studies of Li mobility in NASICON-type glass-ceramic ionic conductors with optimized microstructure
T2 - Journal of Materials Chemistry A
AU - Vyalikh, Anastasia
AU - Schikora, Marc
AU - Seipel, Kaspar P
AU - Weigler, Max
AU - Zschornak, Matthias
AU - Meutzner, Falk
AU - Münchgesang, Wolfram
AU - Nestler, Tina
AU - Vizgalov, Viktor
AU - Itkis, Daniil
AU - Privalov, A.F.
AU - Privalov, Alexei F
AU - Vogel, Michael
AU - Meyer, Dirk C.
PY - 2019
DA - 2019/04/01
PB - Royal Society of Chemistry (RSC)
SP - 13968-13977
IS - 23
VL - 7
SN - 2050-7488
SN - 2050-7496
SN - 0959-9428
SN - 1364-5501
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2019_Vyalikh,
author = {Anastasia Vyalikh and Marc Schikora and Kaspar P Seipel and Max Weigler and Matthias Zschornak and Falk Meutzner and Wolfram Münchgesang and Tina Nestler and Viktor Vizgalov and Daniil Itkis and A.F. Privalov and Alexei F Privalov and Michael Vogel and Dirk C. Meyer and others},
title = {NMR studies of Li mobility in NASICON-type glass-ceramic ionic conductors with optimized microstructure},
journal = {Journal of Materials Chemistry A},
year = {2019},
volume = {7},
publisher = {Royal Society of Chemistry (RSC)},
month = {apr},
url = {https://xlink.rsc.org/?DOI=C8TA11686E},
number = {23},
pages = {13968--13977},
doi = {10.1039/c8ta11686e}
}
MLA
Cite this
MLA Copy
Vyalikh, Anastasia, et al. “NMR studies of Li mobility in NASICON-type glass-ceramic ionic conductors with optimized microstructure.” Journal of Materials Chemistry A, vol. 7, no. 23, Apr. 2019, pp. 13968-13977. https://xlink.rsc.org/?DOI=C8TA11686E.