том 7 издание 39 страницы 22596-22603

Hexaazatriphenylene-based polymer cathode for fast and stable lithium-, sodium- and potassium-ion batteries

Roman R Kapaev 1, 2, 3, 4, 5, 6, 7, 8
I. S. ZHIDKOV 7, 9, 10, 11, 12
E. Z. Kurmaev 9, 13
Ernst Z Kurmaev 7, 10, 11, 12, 14
Keith J Stevenson 1, 4, 5, 6, 7
Pavel A. Troshin 1, 2, 4, 5, 6, 7, 8
Тип публикацииJournal Article
Дата публикации2019-09-23
scimago Q1
wos Q1
БС1
SJR2.462
CiteScore16.7
Impact factor9.5
ISSN20507488, 20507496, 09599428, 13645501
General Chemistry
General Materials Science
Renewable Energy, Sustainability and the Environment
Краткое описание
Organic redox-active compounds represent a promising family of materials for metal-ion batteries. They can be produced from renewable resources and contain no toxic or expensive heavy metals. Moreover, they are much less specific to the nature of the mobile ion, such as Li+, Na+ or K+, which facilitates the development of cheaper alternatives to the currently dominating lithium-ion battery technology. Here we report stable and ultrafast lithium-, sodium- and potassium-ion batteries (LIBs, SIBs and PIBs) comprising a polymer cathode based on hexaazatriphenylene, which is synthesized from 3,3′-diaminobenzidine and triquinoyl. Using LIBs as a model system, it is shown that the application of dimethoxyethane (DME) as the electrolyte solvent is crucial for achieving a superior performance. Using a DME-based electrolyte, a specific capacity of 169 mA h g−1 is reached for PIBs at an impressive current density of 10 A g−1 (charging/discharging in ca. one minute) after 4600 cycles. At a lower current density of 50 mA g−1, the capacity of PIBs approaches 245 mA h g−1. The performance of the designed polymer cathode is among the best ever reported for K-ion battery materials in terms of specific capacity, energy and power density. The polymer-based devices demonstrated record cycling stability, outperforming all non-aqueous potassium-ion batteries reported to date.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
6
7
8
Journal of Materials Chemistry A
8 публикаций, 7.77%
Energy Storage Materials
7 публикаций, 6.8%
Chemical Engineering Journal
6 публикаций, 5.83%
Advanced Functional Materials
5 публикаций, 4.85%
Advanced Materials
5 публикаций, 4.85%
ACS applied materials & interfaces
5 публикаций, 4.85%
ACS Applied Energy Materials
4 публикации, 3.88%
Angewandte Chemie - International Edition
4 публикации, 3.88%
Angewandte Chemie
4 публикации, 3.88%
Journal of Power Sources
3 публикации, 2.91%
Batteries & Supercaps
3 публикации, 2.91%
ChemSusChem
2 публикации, 1.94%
Synthetic Metals
2 публикации, 1.94%
Journal of the Electrochemical Society
2 публикации, 1.94%
Electrochemical Energy Reviews
2 публикации, 1.94%
Nanoscale
2 публикации, 1.94%
Chemical Society Reviews
2 публикации, 1.94%
Physica Status Solidi (A) Applications and Materials Science
1 публикация, 0.97%
Energies
1 публикация, 0.97%
Polymers
1 публикация, 0.97%
Transactions of Tianjin University
1 публикация, 0.97%
Journal of Molecular Structure
1 публикация, 0.97%
Catalysis Today
1 публикация, 0.97%
Materials and Design
1 публикация, 0.97%
Electrochimica Acta
1 публикация, 0.97%
Journal of Energy Chemistry
1 публикация, 0.97%
Journal of Semiconductors
1 публикация, 0.97%
EnergyChem
1 публикация, 0.97%
Cell Reports Physical Science
1 публикация, 0.97%
1
2
3
4
5
6
7
8

Издатели

5
10
15
20
25
30
35
40
Wiley
38 публикаций, 36.89%
Elsevier
28 публикаций, 27.18%
American Chemical Society (ACS)
14 публикаций, 13.59%
Royal Society of Chemistry (RSC)
12 публикаций, 11.65%
Springer Nature
4 публикации, 3.88%
The Electrochemical Society
2 публикации, 1.94%
MDPI
2 публикации, 1.94%
IOP Publishing
1 публикация, 0.97%
Pleiades Publishing
1 публикация, 0.97%
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 публикация, 0.97%
5
10
15
20
25
30
35
40
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
103
Поделиться
Цитировать
ГОСТ |
Цитировать
Kapaev R. R. et al. Hexaazatriphenylene-based polymer cathode for fast and stable lithium-, sodium- and potassium-ion batteries // Journal of Materials Chemistry A. 2019. Vol. 7. No. 39. pp. 22596-22603.
ГОСТ со всеми авторами (до 50) Скопировать
Kapaev R. R., ZHIDKOV I. S., Kurmaev E. Z., Kurmaev E. Z., Stevenson K. J., Troshin P. A. Hexaazatriphenylene-based polymer cathode for fast and stable lithium-, sodium- and potassium-ion batteries // Journal of Materials Chemistry A. 2019. Vol. 7. No. 39. pp. 22596-22603.
RIS |
Цитировать
TY - JOUR
DO - 10.1039/c9ta06430c
UR - https://xlink.rsc.org/?DOI=C9TA06430C
TI - Hexaazatriphenylene-based polymer cathode for fast and stable lithium-, sodium- and potassium-ion batteries
T2 - Journal of Materials Chemistry A
AU - Kapaev, Roman R
AU - ZHIDKOV, I. S.
AU - Kurmaev, E. Z.
AU - Kurmaev, Ernst Z
AU - Stevenson, Keith J
AU - Troshin, Pavel A.
PY - 2019
DA - 2019/09/23
PB - Royal Society of Chemistry (RSC)
SP - 22596-22603
IS - 39
VL - 7
SN - 2050-7488
SN - 2050-7496
SN - 0959-9428
SN - 1364-5501
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2019_Kapaev,
author = {Roman R Kapaev and I. S. ZHIDKOV and E. Z. Kurmaev and Ernst Z Kurmaev and Keith J Stevenson and Pavel A. Troshin},
title = {Hexaazatriphenylene-based polymer cathode for fast and stable lithium-, sodium- and potassium-ion batteries},
journal = {Journal of Materials Chemistry A},
year = {2019},
volume = {7},
publisher = {Royal Society of Chemistry (RSC)},
month = {sep},
url = {https://xlink.rsc.org/?DOI=C9TA06430C},
number = {39},
pages = {22596--22603},
doi = {10.1039/c9ta06430c}
}
MLA
Цитировать
Kapaev, Roman R., et al. “Hexaazatriphenylene-based polymer cathode for fast and stable lithium-, sodium- and potassium-ion batteries.” Journal of Materials Chemistry A, vol. 7, no. 39, Sep. 2019, pp. 22596-22603. https://xlink.rsc.org/?DOI=C9TA06430C.