Open Access
Open access
том 17 издание 12 страницы 2474-2492

Activity‐based model based on multi‐day cellular data: Considering the lack of personal attributes and activity type

Yudong Guo 1
Fei Yang 1
Haomin Yan 2
Siyuan Xie 1
Haode Liu 3
Zhuang Dai 1
2
 
China Railway Eryuan Engineering Group Co., Ltd. Chengdu Sichuan People's Republic of China
3
 
China Academy of Transportation Sciences Chaoyang District Beijing People's Republic of China
Тип публикацииJournal Article
Дата публикации2023-09-08
scimago Q1
wos Q2
БС1
SJR0.678
CiteScore5.7
Impact factor2.5
ISSN1751956X, 17519578
Mechanical Engineering
Law
General Environmental Science
Transportation
Краткое описание

Cellular data is a sequence of base station‐interaction data that records user ID, timestamp, location area code (LAC), and cell identity (CID). With long observation periods, the data allows traffic planners to analyze coarse‐granularity user travel behaviours at low costs. However, utilizing cellular data for urban planning is not an easy task as the data lacks user socioeconomic attributes due to privacy issues. The data is also challenging to recognize user activity types. This paper proposed an activity‐based model (ABM) with skeleton schedule constraints for multi‐day cellular data. The model first infers the activity pattern and home location. Then it predicts start time, duration, and locations separately for primary and secondary activities. Next, the model infers the travel mode and path considering user multi‐day travel behaviour, path non‐linear coefficient, and transfers. Finally, a time adjustment module is proposed to avoid time conflicts in consecutive activities. The proposed activity‐based model is validated at activity, travel, and path levels. Results show that the proposed model can effectively predict activities and has much higher stability than existing ABMs based on travel surveys.

Найдено 
Найдено 

Топ-30

Журналы

1
2
Sustainability
2 публикации, 40%
Transportation Letters
1 публикация, 20%
Future Transportation
1 публикация, 20%
IET Intelligent Transport Systems
1 публикация, 20%
1
2

Издатели

1
2
3
MDPI
3 публикации, 60%
Taylor & Francis
1 публикация, 20%
Institution of Engineering and Technology (IET)
1 публикация, 20%
1
2
3
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
5
Поделиться
Цитировать
ГОСТ |
Цитировать
Guo Y. et al. Activity‐based model based on multi‐day cellular data: Considering the lack of personal attributes and activity type // IET Intelligent Transport Systems. 2023. Vol. 17. No. 12. pp. 2474-2492.
ГОСТ со всеми авторами (до 50) Скопировать
Guo Y., Yang F., Yan H., Xie S., Liu H., Dai Z. Activity‐based model based on multi‐day cellular data: Considering the lack of personal attributes and activity type // IET Intelligent Transport Systems. 2023. Vol. 17. No. 12. pp. 2474-2492.
RIS |
Цитировать
TY - JOUR
DO - 10.1049/itr2.12425
UR - https://doi.org/10.1049/itr2.12425
TI - Activity‐based model based on multi‐day cellular data: Considering the lack of personal attributes and activity type
T2 - IET Intelligent Transport Systems
AU - Guo, Yudong
AU - Yang, Fei
AU - Yan, Haomin
AU - Xie, Siyuan
AU - Liu, Haode
AU - Dai, Zhuang
PY - 2023
DA - 2023/09/08
PB - Institution of Engineering and Technology (IET)
SP - 2474-2492
IS - 12
VL - 17
SN - 1751-956X
SN - 1751-9578
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2023_Guo,
author = {Yudong Guo and Fei Yang and Haomin Yan and Siyuan Xie and Haode Liu and Zhuang Dai},
title = {Activity‐based model based on multi‐day cellular data: Considering the lack of personal attributes and activity type},
journal = {IET Intelligent Transport Systems},
year = {2023},
volume = {17},
publisher = {Institution of Engineering and Technology (IET)},
month = {sep},
url = {https://doi.org/10.1049/itr2.12425},
number = {12},
pages = {2474--2492},
doi = {10.1049/itr2.12425}
}
MLA
Цитировать
Guo, Yudong, et al. “Activity‐based model based on multi‐day cellular data: Considering the lack of personal attributes and activity type.” IET Intelligent Transport Systems, vol. 17, no. 12, Sep. 2023, pp. 2474-2492. https://doi.org/10.1049/itr2.12425.