Open Access
Open access
том 469 страницы 52

A Machine Learning Approach to Identify Optimal Cultivation Practices for Sustainable apple Production in Precision Agriculture in Morocco

Rachid Ed-Daoudi 1
Altaf Alaoui 1
Badia Ettaki 1, 2
Jamal Zerouaoui 1
Тип публикацииJournal Article
Дата публикации2023-12-20
SJR0.205
CiteScore1.1
Impact factor
ISSN22671242, 25550403
Краткое описание

Precision agriculture techniques have been increasingly adopted worldwide to optimize cultivation practices and achieve sustainable crop production. In this study, we developed a Machine Learning approach to identify optimal cultivation practices for sustainable apple production in precision agriculture in the Msemrir town Morocco. We collected a dataset of cultivation practices and apple yield and size data from 10 farms in the town and used correlation-based feature selection and three Machine Learning algorithms (Linear Regression, Decision Tree, and Random Forest) to develop predictive models. The results showed that irrigation, fertilization, and pruning are the most important cultivation practices for apple production in the region, and the Random Forest model performed the best in predicting apple yield and size based on the selected practices. The use of Machine Learning techniques can help farmers optimize cultivation practices and achieve sustainable apple production by reducing inputs such as water and fertilizer and minimizing environmental impact. Moreover, the use of precision agriculture techniques can help farmers meet consumer demand for sustainable and high-quality apple products.

Найдено 
Найдено 

Топ-30

Журналы

1
Applied Fruit Science
1 публикация, 100%
1

Издатели

1
Springer Nature
1 публикация, 100%
1
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
1
Поделиться
Цитировать
ГОСТ |
Цитировать
Ed-Daoudi R. et al. A Machine Learning Approach to Identify Optimal Cultivation Practices for Sustainable apple Production in Precision Agriculture in Morocco // E3S Web of Conferences. 2023. Vol. 469. p. 52.
ГОСТ со всеми авторами (до 50) Скопировать
Ed-Daoudi R., Alaoui A., Ettaki B., Zerouaoui J. A Machine Learning Approach to Identify Optimal Cultivation Practices for Sustainable apple Production in Precision Agriculture in Morocco // E3S Web of Conferences. 2023. Vol. 469. p. 52.
RIS |
Цитировать
TY - JOUR
DO - 10.1051/e3sconf/202346900052
UR - https://www.e3s-conferences.org/10.1051/e3sconf/202346900052
TI - A Machine Learning Approach to Identify Optimal Cultivation Practices for Sustainable apple Production in Precision Agriculture in Morocco
T2 - E3S Web of Conferences
AU - Ed-Daoudi, Rachid
AU - Alaoui, Altaf
AU - Ettaki, Badia
AU - Zerouaoui, Jamal
PY - 2023
DA - 2023/12/20
PB - EDP Sciences
SP - 52
VL - 469
SN - 2267-1242
SN - 2555-0403
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2023_Ed-Daoudi,
author = {Rachid Ed-Daoudi and Altaf Alaoui and Badia Ettaki and Jamal Zerouaoui},
title = {A Machine Learning Approach to Identify Optimal Cultivation Practices for Sustainable apple Production in Precision Agriculture in Morocco},
journal = {E3S Web of Conferences},
year = {2023},
volume = {469},
publisher = {EDP Sciences},
month = {dec},
url = {https://www.e3s-conferences.org/10.1051/e3sconf/202346900052},
pages = {52},
doi = {10.1051/e3sconf/202346900052}
}