International Journal of Limnology, volume 60, pages 17

Winter is not coming: evaluating impacts of changing winter conditions on coregonine reproductive phenology

Taylor R Stewart 1, 2
J Karjalainen 3
M. Zucchetta 4
Chloé Goulon 5
Orlane Anneville 5
Mark R. Vinson 6
Josef Wanzenböck 7
Jason D. Stockwell 2
Publication typeJournal Article
Publication date2024-09-09
scimago Q3
wos Q4
SJR0.280
CiteScore2.2
Impact factor0.7
ISSN28231465, 26913208
Abstract

Fishes in northern latitude lakes are at risk from climate-induced warming because the seasonality in water temperature is degrading, which can change ecosystem properties and the phenology of life-history events. Temperature-dependent embryo development models were developed for a group of cold, stenothermic fishes (Salmonidae Coregoninae) to assess the potential impacts of climate-induced changes in water temperature on cisco (Coregonus artedi) from two populations in Lake Superior (Apostle Islands [USA] and Thunder Bay [Canada]) and one in Lake Ontario (USA), vendace (C. albula) in Lake Southern Konnevesi (Finland), and European whitefish (C. lavaretus) in lakes Southern Konnevesi, Constance (Germany), Geneva (France), and Annecy (France). Water temperatures for each study group were simulated and changes in reproductive phenology across historic (1900–2006) and three future climatic-warming scenarios (2007–2099) were investigated. Models predicted that increases in water temperatures are likely to cause delayed spawning, shorter embryo incubation durations, and earlier larval hatching. Relative changes increased as warming scenarios increased in severity and were higher for littoral as compared to pelagic populations. Our simulations demonstrated that slower cooling in the autumn and (or) more rapid warming in spring can translate into substantial changes in the reproductive phenology of coregonines among our study groups. We expect that the changes in reproductive phenology predicted by our models, in the absence of thermal or behavioral adaptation, will have negative implications for population sustainability.

Found 

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?