Open Access
Open access
Journal of Space Weather and Space Climate, volume 12, pages 5

Calibration of the GOES 6–16 high-energy proton detectors based on modelling of ground level enhancement energy spectra

Publication typeJournal Article
Publication date2022-02-15
scimago Q2
SJR1.056
CiteScore6.9
Impact factor3.4
ISSN21157251
Space and Planetary Science
Atmospheric Science
Abstract

For several decades, the Geostationary Operational Environmental Satellites (GOES) series have provided both real-time and historical data for radiation exposure estimation and solar proton radiation environment modelling. Recently, several groups conducted calibration studies that significantly reduced the uncertainties on the response of GOES proton detectors, thus improving the reliability of the spectral observations of solar energetic particle events. In this work, the long-established Band function fitting set for past ground level enhancements (GLEs) and their recent revision are used as references to estimate the best matching energies of proton channels of GOES 6–16, with emphasis on comparing with previous calibration studies on the high energetic proton measurements. The calculated energies for different missions in the same series (GOES 8, 10, 11) show overall consistency but with small variations, and differences among missions of different series are noticeable for measurements crossing the past three solar cycles, though the results are sensitive to the method used to subtract background fluxes. The discrepancy and agreement with previous calibration efforts are demonstrated with other independent analyses. It is verified that the integral channel P11 of GOES 6–16 can be reliably used as a differential proton channel with an effective energy of about 1 GeV. Therefore, the multi-decade in situ measurements of the GOES series can be utilized with more extensive energy coverage to improve space radiation environment models.

Found 
Found 

Top-30

Journals

1
1

Publishers

1
2
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?