volume 168 issue 1 pages 111-1200000

Detection of Gastrointestinal Bleeding with Large Language Models to Aid Quality Improvement and Appropriate Reimbursement

Neil S Zheng 1
Vipina K. Keloth 2
Kisung You 3
Daniel Kats 4
Darrick K. Li 5
Ohm Deshpande 6
Hamita Sachar 5
Hua Xu 2
Loren Laine 7
Dennis L. Shung 8
Publication typeJournal Article
Publication date2025-01-01
scimago Q1
wos Q1
SJR7.195
CiteScore39.5
Impact factor25.1
ISSN00165085, 15280012
Abstract
Early identification and accurate characterization of overt gastrointestinal bleeding (GIB) enables opportunities to optimize patient management and ensures appropriately risk-adjusted coding for claims-based quality measures and reimbursement. Recent advancements in generative artificial intelligence, particularly large language models (LLMs), create opportunities to support accurate identification of clinical conditions. In this study, we present the first LLM-based pipeline for identification of overt GIB in the electronic health record (EHR). We demonstrate two clinically relevant applications: the automated detection of recurrent bleeding and appropriate reimbursement coding for patients with GIB.
Found 
Found 

Top-30

Journals

1
Bioengineering
1 publication, 12.5%
Gastroenterology
1 publication, 12.5%
Journal of Biomedical Informatics
1 publication, 12.5%
Medical Clinics of North America
1 publication, 12.5%
Nature Reviews Gastroenterology and Hepatology
1 publication, 12.5%
Australian Critical Care
1 publication, 12.5%
Risk Management and Healthcare Policy
1 publication, 12.5%
1

Publishers

1
2
3
4
Elsevier
4 publications, 50%
MDPI
1 publication, 12.5%
Springer Nature
1 publication, 12.5%
Cold Spring Harbor Laboratory
1 publication, 12.5%
Taylor & Francis
1 publication, 12.5%
1
2
3
4
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
8
Share
Cite this
GOST |
Cite this
GOST Copy
Zheng N. S. et al. Detection of Gastrointestinal Bleeding with Large Language Models to Aid Quality Improvement and Appropriate Reimbursement // Gastroenterology. 2025. Vol. 168. No. 1. pp. 111-1200000.
GOST all authors (up to 50) Copy
Zheng N. S., Keloth V. K., You K., Kats D., Li D. K., Deshpande O., Sachar H., Xu H., Laine L., Shung D. L. Detection of Gastrointestinal Bleeding with Large Language Models to Aid Quality Improvement and Appropriate Reimbursement // Gastroenterology. 2025. Vol. 168. No. 1. pp. 111-1200000.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1053/j.gastro.2024.09.014
UR - https://linkinghub.elsevier.com/retrieve/pii/S0016508524054672
TI - Detection of Gastrointestinal Bleeding with Large Language Models to Aid Quality Improvement and Appropriate Reimbursement
T2 - Gastroenterology
AU - Zheng, Neil S
AU - Keloth, Vipina K.
AU - You, Kisung
AU - Kats, Daniel
AU - Li, Darrick K.
AU - Deshpande, Ohm
AU - Sachar, Hamita
AU - Xu, Hua
AU - Laine, Loren
AU - Shung, Dennis L.
PY - 2025
DA - 2025/01/01
PB - Elsevier
SP - 111-1200000
IS - 1
VL - 168
PMID - 39304088
SN - 0016-5085
SN - 1528-0012
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Zheng,
author = {Neil S Zheng and Vipina K. Keloth and Kisung You and Daniel Kats and Darrick K. Li and Ohm Deshpande and Hamita Sachar and Hua Xu and Loren Laine and Dennis L. Shung},
title = {Detection of Gastrointestinal Bleeding with Large Language Models to Aid Quality Improvement and Appropriate Reimbursement},
journal = {Gastroenterology},
year = {2025},
volume = {168},
publisher = {Elsevier},
month = {jan},
url = {https://linkinghub.elsevier.com/retrieve/pii/S0016508524054672},
number = {1},
pages = {111--1200000},
doi = {10.1053/j.gastro.2024.09.014}
}
MLA
Cite this
MLA Copy
Zheng, Neil S., et al. “Detection of Gastrointestinal Bleeding with Large Language Models to Aid Quality Improvement and Appropriate Reimbursement.” Gastroenterology, vol. 168, no. 1, Jan. 2025, pp. 111-1200000. https://linkinghub.elsevier.com/retrieve/pii/S0016508524054672.