Biomicrofluidics, volume 7, issue 2, pages 24105

Reconfigurable microfluidics combined with antibody microarrays for enhanced detection of T-cell secreted cytokines

Arnold Chen 1
Tam Vu 1
Gulnaz Stybayeva 1
Tingrui Pan 1
Alexander Revzin 1
1
 
University of California Department of Biomedical Engineering, , Davis, California 95616, USA
Publication typeJournal Article
Publication date2013-03-01
Journal: Biomicrofluidics
scimago Q2
SJR0.516
CiteScore5.8
Impact factor2.6
ISSN19321058
PubMed ID:  24404010
Colloid and Surface Chemistry
Condensed Matter Physics
General Materials Science
Biomedical Engineering
Fluid Flow and Transfer Processes
Abstract

Cytokines are small proteins secreted by leukocytes in blood in response to infections, thus offering valuable diagnostic information. Given that the same cytokines may be produced by different leukocyte subsets in blood, it is beneficial to connect production of cytokines to specific cell types. In this paper, we describe integration of antibody (Ab) microarrays into a microfluidic device to enable enhanced cytokine detection. The Ab arrays contain spots specific to cell-surface antigens as well as anti-cytokine detection spots. Infusion of blood into a microfluidic device results in the capture of specific leukocytes (CD4 T-cells) and is followed by detection of secreted cytokines on the neighboring Ab spots using sandwich immunoassay. The enhancement of cytokine signal comes from leveraging the concept of reconfigurable microfluidics. A three layer polydimethylsiloxane microfluidic device is fabricated so as to contain six microchambers (1 mm × 1 mm × 30 μm) in the ceiling of the device. Once the T-cell capture is complete, the device is reconfigured by withdrawing liquid from the channel, causing the chambers to collapse onto Ab arrays and enclose cell/anti-cytokine spots within a 30 nl volume. In a set of proof-of-concept experiments, we demonstrate that ∼90% pure CD4 T-cells can be captured inside the device and that signals for three important T-cell secreted cytokines, tissue necrosis factor-alpha, interferon-gamma, and interleukin-2, may be enhanced by 2 to 3 folds through the use of reconfigurable microfluidics.

Found 
Found 

Top-30

Journals

1
2
3
1
2
3

Publishers

1
2
3
1
2
3
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?