Applied Physics Letters, volume 123, issue 20

Mid-wavelength infrared photoconductive film synthesized from PbSe molecular ink

Publication typeJournal Article
Publication date2023-11-13
scimago Q1
SJR0.976
CiteScore6.4
Impact factor3.5
ISSN00036951, 10773118
Physics and Astronomy (miscellaneous)
Abstract

Metal chalcogenide thin films are used in a wide range of modern technological applications. While vacuum deposition methods are commonly utilized to fabricate the film, solution-based approaches have garnered an increasing interest due to their potential for low-cost, high-throughput manufacturing, and compatibility with silicon complementary metal–oxide–semiconductor processing. Here, we report a general strategy for preparing mid-wavelength infrared (MWIR = 3–5 μm) photoconductive film using a PbSe molecular ink. This ethylenediamine-based ink solution is synthesized using a simple diphenyl dichalcogenide route, and the deposited film, after the sensitization annealing, exhibits a specific detectivity of 109 Jones at 3.5 μm at room temperature. This work represents the demonstration of MWIR-photosensitive semiconductor films prepared using an emerging alkahest-based approach, highlighting a significant research avenue in the pursuit toward low SWAP-C (size, weight, power consumption, and cost) infrared imager development.

Top-30

Journals

1
2
1
2

Publishers

1
2
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?