Chaos, volume 35, issue 1

Clustering time-evolving networks using the spatiotemporal graph Laplacian

Publication typeJournal Article
Publication date2025-01-01
Journal: Chaos
scimago Q1
SJR0.778
CiteScore5.2
Impact factor2.7
ISSN10541500, 10897682
Abstract

Time-evolving graphs arise frequently when modeling complex dynamical systems such as social networks, traffic flow, and biological processes. Developing techniques to identify and analyze communities in these time-varying graph structures is an important challenge. In this work, we generalize existing spectral clustering algorithms from static to dynamic graphs using canonical correlation analysis to capture the temporal evolution of clusters. Based on this extended canonical correlation framework, we define the spatiotemporal graph Laplacian and investigate its spectral properties. We connect these concepts to dynamical systems theory via transfer operators and illustrate the advantages of our method on benchmark graphs by comparison with existing methods. We show that the spatiotemporal graph Laplacian allows for a clear interpretation of cluster structure evolution over time for directed and undirected graphs.

Found 
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?