Open Access
Open access
Applied Physics Reviews, volume 7, issue 4, pages 41303

Application of ion beam technology in (photo)electrocatalytic materials for renewable energy

Publication typeJournal Article
Publication date2020-10-16
Quartile SCImago
Q1
Quartile WOS
Q1
Impact factor15
ISSN19319401
General Physics and Astronomy
Abstract

The development of environmentally friendly, efficient, and universal access renewable energy technology is the key to achieve the goal of sustainable development. (Photo)electrochemical energy storage and conversion technology is an important part. Therefore, to realize the practical application of (photo)electrochemical energy technology, nanostructured catalytic materials need to be reasonably designed, synthesized, and modified. Ion beam technology is a powerful and versatile physical modification method. Modification of various catalytic materials from the surface to interface and thin films can be realized by controlling the species, energy, and fluence of implanted ions. Ion beam technology has its unique advantages, including its compulsivity of element doping and its high controllability, accuracy, and repeatability. It can realize arbitrary element doping and defect control of almost any material and finely control its concentration. This makes it possible for the ion beam technology to adapt to the modification requirements of catalytic materials to tailor the electronic structure, interface structure, and morphology of the materials more finely. Besides, a variety of strategies for material design can be realized using ion beams, including element doping, defect control, heterostructure construction, and micro/nanostructure formation, which may bring novel changes in catalytic materials. In this Review, we briefly introduce the principle of ion beam technology and introduce various ion beam technologies that can be applied to different catalytic material modification applications. We systematically review the research progress on the application of ion beam technology in photocatalytic, photoelectrocatalytic, and electrocatalytic materials for water splitting including bandgap engineering, defect engineering, heterostructure formation through ion doping, ion irradiation, ion sputtering, and their combined effects. The applications of ion beam technology on modification of fuel oxidation reaction and oxygen reduction reaction electrocatalysts for fuel cells are also introduced. The advantages of ion beam technology in the modification of catalytic materials are summarized. Several promising topics are proposed to look forward to the future development of ion beam technology in the field of catalytic materials.

Top-30

Journals

1
2
Applied Physics Reviews
2 publications, 5.88%
Optical Materials
2 publications, 5.88%
Journal of Environmental Sciences
1 publication, 2.94%
ECS Journal of Solid State Science and Technology
1 publication, 2.94%
Nanomaterials
1 publication, 2.94%
Journal of the Korean Physical Society
1 publication, 2.94%
Nano Research
1 publication, 2.94%
Emergent Materials
1 publication, 2.94%
Journal of Materials Science: Materials in Electronics
1 publication, 2.94%
Polymer Composites
1 publication, 2.94%
Materials Today Chemistry
1 publication, 2.94%
Applied Surface Science
1 publication, 2.94%
Ceramics International
1 publication, 2.94%
Journal of Physics Condensed Matter
1 publication, 2.94%
FlatChem
1 publication, 2.94%
Small
1 publication, 2.94%
ACS Applied Electronic Materials
1 publication, 2.94%
Chemical Reviews
1 publication, 2.94%
Journal of Physical Chemistry C
1 publication, 2.94%
Materials Advances
1 publication, 2.94%
Advanced Energy Materials
1 publication, 2.94%
Molecular Crystals and Liquid Crystals
1 publication, 2.94%
ACS Applied Nano Materials
1 publication, 2.94%
ACS Nano
1 publication, 2.94%
Russian Chemical Reviews
1 publication, 2.94%
Chemical Engineering Journal
1 publication, 2.94%
Energy & Fuels
1 publication, 2.94%
International Journal of Hydrogen Energy
1 publication, 2.94%
Scientific Reports
1 publication, 2.94%
1
2

Publishers

2
4
6
8
10
Elsevier
10 publications, 29.41%
American Chemical Society (ACS)
6 publications, 17.65%
Springer Nature
5 publications, 14.71%
Wiley
4 publications, 11.76%
AIP Publishing
2 publications, 5.88%
IOS Press
1 publication, 2.94%
The Electrochemical Society
1 publication, 2.94%
MDPI
1 publication, 2.94%
IOP Publishing
1 publication, 2.94%
Royal Society of Chemistry (RSC)
1 publication, 2.94%
Taylor & Francis
1 publication, 2.94%
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 publication, 2.94%
2
4
6
8
10
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST |
Cite this
GOST Copy
Wang X. et al. Application of ion beam technology in (photo)electrocatalytic materials for renewable energy // Applied Physics Reviews. 2020. Vol. 7. No. 4. p. 41303.
GOST all authors (up to 50) Copy
Wang X., Wan W., Shen S., Wu H., Zhong H., Jiang C., Ren F. Application of ion beam technology in (photo)electrocatalytic materials for renewable energy // Applied Physics Reviews. 2020. Vol. 7. No. 4. p. 41303.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1063/5.0021322
UR - https://doi.org/10.1063/5.0021322
TI - Application of ion beam technology in (photo)electrocatalytic materials for renewable energy
T2 - Applied Physics Reviews
AU - Wang, Xuening
AU - Wan, Wenjing
AU - Shen, Shaohua
AU - Wu, Hengyi
AU - Zhong, Huizhou
AU - Jiang, Changzhong
AU - Ren, Feng
PY - 2020
DA - 2020/10/16
PB - AIP Publishing
SP - 41303
IS - 4
VL - 7
SN - 1931-9401
ER -
BibTex |
Cite this
BibTex Copy
@article{2020_Wang,
author = {Xuening Wang and Wenjing Wan and Shaohua Shen and Hengyi Wu and Huizhou Zhong and Changzhong Jiang and Feng Ren},
title = {Application of ion beam technology in (photo)electrocatalytic materials for renewable energy},
journal = {Applied Physics Reviews},
year = {2020},
volume = {7},
publisher = {AIP Publishing},
month = {oct},
url = {https://doi.org/10.1063/5.0021322},
number = {4},
pages = {41303},
doi = {10.1063/5.0021322}
}
MLA
Cite this
MLA Copy
Wang, Xuening, et al. “Application of ion beam technology in (photo)electrocatalytic materials for renewable energy.” Applied Physics Reviews, vol. 7, no. 4, Oct. 2020, p. 41303. https://doi.org/10.1063/5.0021322.
Found error?
Profiles