Open Access
Open access

Machine learning uncovers the most robust self-report predictors of relationship quality across 43 longitudinal couples studies

Samantha Joel 1
Paul W. Eastwick 2
Colleen J. Allison 3
X B Arriaga 4
Zachary G Baker 5
Eran Bar-Kalifa 6
Sophie Bergeron 7
Gurit E. Birnbaum 8
Rebecca L. Brock 9
Claudia C. Brumbaugh 10
Cheryl Carmichael 11
Serena Chen 12
Jennifer Clarke 13
Rebecca J. Cobb 14
Michael K. Coolsen 15
Jody Davis 16
David C De Jong 17
Anik Debrot 18
Eva C Dehaas 3
Jaye L. Derrick 5
Jami Eller 19
Marie Jöelle Estrada 20
Ruddy Faure 21
Eli J. Finkel 22
R. Chris Fraley 23
Shelly L. Gable 24
Reuma Gadassi Polack 25
Yuthika U. Girme 3
Amie M Gordon 26
Courtney L. Gosnell 27
Matthew D Hammond 28
Peggy A. Hannon 29
Cheryl Harasymchuk 30
Wilhelm Hofmann 31
Andrea B. Horn 32
Emily A. Impett 33
Jeremy P Jamieson 20
Dacher Keltner 11
James J. Kim 34
Jeffrey L. Kirchner 35
Esther S Kluwer 36, 37
Madoka Kumashiro 38
Grace Larson 39
Gal Lazarus 40
Jill M Logan 3
Laura B. Luchies 41
Geoff MacDonald 34
Laura V. Machia 42
Michael R Maniaci 43
Jessica A. Maxwell 44
Moran Mizrahi 45
Amy Muise 46
Sylvia Niehuis 14
Brian Ogolsky 47
C Rebecca Oldham 14
Nickola C Overall 44
Meinrad Perrez 48
Brett J Peters 49
Paula R. Pietromonaco 50
Sally I Powers 50
Thery Prok 24
Rony Pshedetzky Shochat 40
Eshkol Rafaeli 40, 51
Erin L. Ramsdell 9
Maija Reblin 52
Michael Reicherts 48
Alan Reifman 14
Harry T Reis 20
Galena K. Rhoades 53
William S. Rholes 54
Francesca Righetti 21
Lindsey M. Rodriguez 55
Ronald D. Rogge 20
Natalie O. Rosen 56
Darby E. Saxbe 57
Haran Sened 40
Jeffry A. Simpson 19
Erica B Slotter 58
Scott M. Stanley 53
Shevaun Stocker 59
Cathy Surra 60
Hagar ter Kuile 36
Allison A. Vaughn 61
Amanda M. Vicary 62
Mariko L. Visserman 34, 46
Scott Wolf 35
27
 
Department of Psychology, Pace University, Pleasantville, NY 10570;
Publication typeJournal Article
Publication date2020-07-27
scimago Q1
wos Q1
SJR3.414
CiteScore16.5
Impact factor9.1
ISSN00278424, 10916490
Multidisciplinary
Abstract
Significance

What predicts how happy people are with their romantic relationships? Relationship science—an interdisciplinary field spanning psychology, sociology, economics, family studies, and communication—has identified hundreds of variables that purportedly shape romantic relationship quality. The current project used machine learning to directly quantify and compare the predictive power of many such variables among 11,196 romantic couples. People’s own judgments about the relationship itself—such as how satisfied and committed they perceived their partners to be, and how appreciative they felt toward their partners—explained approximately 45% of their current satisfaction. The partner’s judgments did not add information, nor did either person’s personalities or traits. Furthermore, none of these variables could predict whose relationship quality would increase versus decrease over time.

Found 
Found 

Top-30

Journals

5
10
15
20
25
30
35
Journal of Social and Personal Relationships
31 publications, 15.2%
Journal of Sex Research
10 publications, 4.9%
Archives of Sexual Behavior
9 publications, 4.41%
Social Psychological and Personality Science
7 publications, 3.43%
Personal Relationships
7 publications, 3.43%
Social and Personality Psychology Compass
6 publications, 2.94%
Personality and Social Psychology Bulletin
5 publications, 2.45%
Frontiers in Psychology
5 publications, 2.45%
Journal of Research in Personality
5 publications, 2.45%
Scientific Reports
5 publications, 2.45%
International Journal of Environmental Research and Public Health
4 publications, 1.96%
Journal of Sexual Medicine
4 publications, 1.96%
Journal of Marital and Family Therapy
4 publications, 1.96%
European Journal of Social Psychology
3 publications, 1.47%
European Journal of Personality
3 publications, 1.47%
Nature Reviews Psychology
3 publications, 1.47%
Personality and Individual Differences
3 publications, 1.47%
Journal of Marriage and Family
3 publications, 1.47%
Proceedings of the National Academy of Sciences of the United States of America
3 publications, 1.47%
Family Process
2 publications, 0.98%
Journal of Social Issues
2 publications, 0.98%
Psychological Science
2 publications, 0.98%
Current Psychology
2 publications, 0.98%
The American Journal of Family Therapy
2 publications, 0.98%
Personality Science
2 publications, 0.98%
Psychosomatik im Zentrum
2 publications, 0.98%
Family Relations
2 publications, 0.98%
Journal of Personality
2 publications, 0.98%
Sexual Medicine Reviews
2 publications, 0.98%
5
10
15
20
25
30
35

Publishers

10
20
30
40
50
60
SAGE
57 publications, 27.94%
Wiley
34 publications, 16.67%
Springer Nature
34 publications, 16.67%
Taylor & Francis
23 publications, 11.27%
Elsevier
18 publications, 8.82%
MDPI
7 publications, 3.43%
Frontiers Media S.A.
6 publications, 2.94%
Oxford University Press
5 publications, 2.45%
American Psychological Association (APA)
5 publications, 2.45%
Proceedings of the National Academy of Sciences (PNAS)
3 publications, 1.47%
Institute of Electrical and Electronics Engineers (IEEE)
3 publications, 1.47%
Association for Computing Machinery (ACM)
2 publications, 0.98%
University of Toronto Press Inc. (UTPress)
1 publication, 0.49%
Public Library of Science (PLoS)
1 publication, 0.49%
Centre for Evaluation in Education and Science (CEON/CEES)
1 publication, 0.49%
Walter de Gruyter
1 publication, 0.49%
Annual Reviews
1 publication, 0.49%
10
20
30
40
50
60
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
205
Share
Cite this
GOST |
Cite this
GOST Copy
Joel S. et al. Machine learning uncovers the most robust self-report predictors of relationship quality across 43 longitudinal couples studies // Proceedings of the National Academy of Sciences of the United States of America. 2020. Vol. 117. No. 32. pp. 19061-19071.
GOST all authors (up to 50) Copy
Joel S. et al. Machine learning uncovers the most robust self-report predictors of relationship quality across 43 longitudinal couples studies // Proceedings of the National Academy of Sciences of the United States of America. 2020. Vol. 117. No. 32. pp. 19061-19071.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1073/pnas.1917036117
UR - https://doi.org/10.1073/pnas.1917036117
TI - Machine learning uncovers the most robust self-report predictors of relationship quality across 43 longitudinal couples studies
T2 - Proceedings of the National Academy of Sciences of the United States of America
AU - Joel, Samantha
AU - Eastwick, Paul W.
AU - Allison, Colleen J.
AU - Arriaga, X B
AU - Baker, Zachary G
AU - Bar-Kalifa, Eran
AU - Bergeron, Sophie
AU - Birnbaum, Gurit E.
AU - Brock, Rebecca L.
AU - Brumbaugh, Claudia C.
AU - Carmichael, Cheryl
AU - Chen, Serena
AU - Clarke, Jennifer
AU - Cobb, Rebecca J.
AU - Coolsen, Michael K.
AU - Davis, Jody
AU - De Jong, David C
AU - Debrot, Anik
AU - Dehaas, Eva C
AU - Derrick, Jaye L.
AU - Eller, Jami
AU - Estrada, Marie Jöelle
AU - Faure, Ruddy
AU - Finkel, Eli J.
AU - Fraley, R. Chris
AU - Gable, Shelly L.
AU - Gadassi Polack, Reuma
AU - Girme, Yuthika U.
AU - Gordon, Amie M
AU - Gosnell, Courtney L.
AU - Hammond, Matthew D
AU - Hannon, Peggy A.
AU - Harasymchuk, Cheryl
AU - Hofmann, Wilhelm
AU - Horn, Andrea B.
AU - Impett, Emily A.
AU - Jamieson, Jeremy P
AU - Keltner, Dacher
AU - Kim, James J.
AU - Kirchner, Jeffrey L.
AU - Kluwer, Esther S
AU - Kumashiro, Madoka
AU - Larson, Grace
AU - Lazarus, Gal
AU - Logan, Jill M
AU - Luchies, Laura B.
AU - MacDonald, Geoff
AU - Machia, Laura V.
AU - Maniaci, Michael R
AU - Maxwell, Jessica A.
AU - Mizrahi, Moran
AU - Muise, Amy
AU - Niehuis, Sylvia
AU - Ogolsky, Brian
AU - Oldham, C Rebecca
AU - Overall, Nickola C
AU - Perrez, Meinrad
AU - Peters, Brett J
AU - Pietromonaco, Paula R.
AU - Powers, Sally I
AU - Prok, Thery
AU - Pshedetzky Shochat, Rony
AU - Rafaeli, Eshkol
AU - Ramsdell, Erin L.
AU - Reblin, Maija
AU - Reicherts, Michael
AU - Reifman, Alan
AU - Reis, Harry T
AU - Rhoades, Galena K.
AU - Rholes, William S.
AU - Righetti, Francesca
AU - Rodriguez, Lindsey M.
AU - Rogge, Ronald D.
AU - Rosen, Natalie O.
AU - Saxbe, Darby E.
AU - Sened, Haran
AU - Simpson, Jeffry A.
AU - Slotter, Erica B
AU - Stanley, Scott M.
AU - Stocker, Shevaun
AU - Surra, Cathy
AU - ter Kuile, Hagar
AU - Vaughn, Allison A.
AU - Vicary, Amanda M.
AU - Visserman, Mariko L.
AU - Wolf, Scott
PY - 2020
DA - 2020/07/27
PB - Proceedings of the National Academy of Sciences (PNAS)
SP - 19061-19071
IS - 32
VL - 117
PMID - 32719123
SN - 0027-8424
SN - 1091-6490
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2020_Joel,
author = {Samantha Joel and Paul W. Eastwick and Colleen J. Allison and X B Arriaga and Zachary G Baker and Eran Bar-Kalifa and Sophie Bergeron and Gurit E. Birnbaum and Rebecca L. Brock and Claudia C. Brumbaugh and Cheryl Carmichael and Serena Chen and Jennifer Clarke and Rebecca J. Cobb and Michael K. Coolsen and Jody Davis and David C De Jong and Anik Debrot and Eva C Dehaas and Jaye L. Derrick and Jami Eller and Marie Jöelle Estrada and Ruddy Faure and Eli J. Finkel and R. Chris Fraley and Shelly L. Gable and Reuma Gadassi Polack and Yuthika U. Girme and Amie M Gordon and Courtney L. Gosnell and Matthew D Hammond and Peggy A. Hannon and Cheryl Harasymchuk and Wilhelm Hofmann and Andrea B. Horn and Emily A. Impett and Jeremy P Jamieson and Dacher Keltner and James J. Kim and Jeffrey L. Kirchner and Esther S Kluwer and Madoka Kumashiro and Grace Larson and Gal Lazarus and Jill M Logan and Laura B. Luchies and Geoff MacDonald and Laura V. Machia and Michael R Maniaci and Jessica A. Maxwell and others},
title = {Machine learning uncovers the most robust self-report predictors of relationship quality across 43 longitudinal couples studies},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
year = {2020},
volume = {117},
publisher = {Proceedings of the National Academy of Sciences (PNAS)},
month = {jul},
url = {https://doi.org/10.1073/pnas.1917036117},
number = {32},
pages = {19061--19071},
doi = {10.1073/pnas.1917036117}
}
MLA
Cite this
MLA Copy
Joel, Samantha, et al. “Machine learning uncovers the most robust self-report predictors of relationship quality across 43 longitudinal couples studies.” Proceedings of the National Academy of Sciences of the United States of America, vol. 117, no. 32, Jul. 2020, pp. 19061-19071. https://doi.org/10.1073/pnas.1917036117.